Не совсем очевидное есть в сети доказательство, что Шар можно непрерывным преобразованием вывернуть на изнанку, а кольцо - нельзя ... Очень в своё время впечатлило! ruclips.net/video/-6g3ZcmjJ7k/видео.html Вот-же топология - Увлекательнейшее занятие и головоломка! Ну а далее идут гомогологии с гомотопиями от товарища Романа Михайлова и прочая жесть, от которой кровь просто в жилах стынет... ruclips.net/video/mqAf5lOJZew/видео.html
Смотрю я вас за столом , на котором кухонная доска лежит . Ровесники мы с ней , или я моложе . Так вот на ней такие причудливые формы , что если владеешь техникой торговых вычислений , легче описать мерности измерений , чем выделить одну фигуру и описать её .
@Кирилл Максимович ноздри тоже, в какой-то мере, "запечатаны" лёгкими, так что это скорее одна большая "вмятина", а не отверстие. А вот для обработки пищи - да.
@Кирилл Максимович не нужно таких подробных объяснений для очевидного, спасибо. Тем не менее, в таком случае можно вспомнить и обо всех остальных анатомических особенностях, не позволяющих свести человеческое тело к тороиду, и четырёх отверстий "недостаточно".
"тор" это замкнутая колбаса. а незамкнутая колбаса это "шар". Вангую, что у тора граней будет меньше на две (те, что склеились), чем у исходного "шара".
думаю, двумерный паук не осилит. ему ведь надо на примере его двумерных штук сначала вывести похожие формулы, чтобы потом выйти за пределы и применить это к воображаемому трёхмерному миру.
Эмм....Правильно ли представлять тор набором кубов? Ведь на мой взгляд соль преобразования в "трубники" в том, чтобы длины ребер оставались прежними. Куб можно надуть, получить из него шар - длины ребер сохранятся. Но при "сборке" тора из кубов - внутренние ребра (опоясывающие дырку) будут короче наружних (опоясывающих внешний край тора), что нарушает правило преобразования (есть ли такое правило?)
О каком измерении идёт речь, я имею ввиду контекст доказательства ? Ведь есть поверхность Римана и мнимые числа. Насколько здесь можно использовать похожий подход чтобы доказать обратное ? Тор может "перетекать" в шар и обратно. Я имею ввиду что есть класс задач у которых решение зависит от порядка мерности пространства. Применительно к 3 мерному пространству решение одно, а с учётом 4 мерного пространства решение другое.
Наш Мир - скорее всего имеет в своей основе топологию тора, нежели сферы, Иначе-бы он был вырожденным и ничтожным по своей сути. Да вы на себя посмотрите! Вы-же Все торы, если Вас непрырывно преобразовать )))
Но ведь это чушь )) В реальности сфера легко преобразуется в тор и в любую другую форму. Просто она преобразуется по нелинейной логике с изменением системы координат.
Глубинный смысл заключается в теории групп. У обеих фигур одинаковые группы симметрии - то есть такие повороты, которые переводят фигуру в себя Куб можно вписать в октаэдр, а откаэдр в куб, поэтому при повороте и переводе куба в себя будет переведён и октаэдр
Все "сложные" задачки в этом "Торовом" Мире имёют ровно одну меру сложности. Потому P=NP А то, что Мы пока не нашли непрерывного преобразования задачи NP к P (проблемка разрешимости КНФ формулы - она же загадочка про инвариант в этой формуле)- дак это пока только наши местячковые проблемки...
Непонятный пример, я граней 51 насчитал, а то "это внутри, а это как бы внутри, а ребра рисуем не внутри".....Кручу-верчу запутать хочу. Идею то я понял, но как пример лучше взять сферическую лошадь)))
Из десяти склеенных кубов можно надуть только длинный цилиндр с полусферами по краям .А говорить,что мы надули тор из кубов - я не согласна с этим. По моим рассуждениям тор можно надуть не из кубов, а из усеченных пирамид, у которых основаниями являются полусферы,причем одна выпуклая,а вторая вогнутая. И именно они ,эти полусферы, имеют такое соотношение количества вершин,граней и рёбер, которое полностью соответствие нашей этой формуле.
Бред... А давайте каждый атом внутри круга считать "системой". С 9 класса математика начинает обсиратся вводя свои вводные потипу х считаем за это а давайте представим то и то равно этому-подгон под отввет
1 А давайте 2 С 9 класса 3 обсиратся 4 обсиратся вводя 5 вводя свои вводные 6 потипу 7 потипу х 8 потипу х считаем 9 а давайте 10 этому-подгон 11 отввет И это не считая чисто смысловых и семантических. И это в трех предложениях. Что там математика - даже письмо и чтение из программы начальной школы не освоены. Зачем вам подорожная, вы же неграмотны.
Лютый сюжет
Призываю воображение!!! Мое воображение закончилось на круглом квадрате,.. нарисованном на плавательном круге....
А , это просто .
! Кладовая знаний не сарай .
Это и на прибитом бантике нормально держится .
Какая будет Элерова характеристика у бесконечного многогранника в виде плоскости(плитка)?
Так. Отлично. И как это связанно с ассиметричной криптографией?
П.с. что такое "остов"?
Не совсем очевидное есть в сети доказательство, что Шар можно непрерывным преобразованием вывернуть на изнанку, а кольцо - нельзя ...
Очень в своё время впечатлило! ruclips.net/video/-6g3ZcmjJ7k/видео.html
Вот-же топология - Увлекательнейшее занятие и головоломка!
Ну а далее идут гомогологии с гомотопиями от товарища Романа Михайлова и прочая жесть, от которой кровь просто в жилах стынет... ruclips.net/video/mqAf5lOJZew/видео.html
Настоятельно советую послушать разговор отца Андрея Ткачёва и Савватеева.
1:35 лучший тайминг, кидайте зигу пацаны
Смотрю я вас за столом , на котором кухонная доска лежит . Ровесники мы с ней , или я моложе .
Так вот на ней такие причудливые формы , что если владеешь техникой торговых вычислений , легче описать мерности измерений , чем выделить одну фигуру и описать её .
Вопрос знатокам! Человеческое тело топологически тор или сфера?
тор с несколькими дырками
@Кирилл Максимович ноздри тоже, в какой-то мере, "запечатаны" лёгкими, так что это скорее одна большая "вмятина", а не отверстие. А вот для обработки пищи - да.
@Кирилл Максимович не нужно таких подробных объяснений для очевидного, спасибо. Тем не менее, в таком случае можно вспомнить и обо всех остальных анатомических особенностях, не позволяющих свести человеческое тело к тороиду, и четырёх отверстий "недостаточно".
Тор с 7 дырками, есть подробное видео от висос
еслим называть плоскости гранями то строить из бублика куб очень последовательно, но требует вмешательства медицинских специалистов
Это связано с гипотезой Пуанкаре?
В каком то смысле да.
Как же в самом начале получилось, что у куба 6 граней, а не 8?
"тор" это замкнутая колбаса. а незамкнутая колбаса это "шар". Вангую, что у тора граней будет меньше на две (те, что склеились), чем у исходного "шара".
гениально!
и правда! потому и ноль в результате. интересно подметил!
А есть ли тела с другими такими числами?
думаю, двумерный паук не осилит. ему ведь надо на примере его двумерных штук сначала вывести похожие формулы, чтобы потом выйти за пределы и применить это к воображаемому трёхмерному миру.
Эмм....Правильно ли представлять тор набором кубов? Ведь на мой взгляд соль преобразования в "трубники" в том, чтобы длины ребер оставались прежними. Куб можно надуть, получить из него шар - длины ребер сохранятся. Но при "сборке" тора из кубов - внутренние ребра (опоясывающие дырку) будут короче наружних (опоясывающих внешний край тора), что нарушает правило преобразования (есть ли такое правило?)
Изменение длины ребер - непрерывное преобразование. Оно разрешено.
Люди, занимающиеся топологией, путают кружку и бублик. Для них это одно и то же - тор. Форма не играет роли.
сделай тор квадратным, какая разница?
а кружка с ручкой?
кружка с ручкой это тоже тор (бублик)
"...мы упрёмся в зад куба..."
🔝🔥🔝🔥🔝🔥🔝🔥🔝🔝🔝🔝🔝🔝🔝🔥🔝🔥🔝🔥🔥🔝🔥🔝🔝🔝🔝🔝🔝🔝🔥🔝🔝🔝🔝🔝🔝🔝🔝🔝🔥🔝🔥🔝🔝🔝🔝🔥🔝🔥🔝🔥🔝🔝🔝🔝🔥🔥🔝🔝🔝🔝🔝🔝🔥🔝🔝🔥🔝🔝🔝🔝🔝🔝👌🔝👌🔝👌🔝🔥🔝🔥🔝🔥🔝
Савватеев интересно сложен , нечто среднее между Дон Кихотом и И солистом группы "Мачете" . . Таких Нестеров писал. )
О каком измерении идёт речь, я имею ввиду контекст доказательства ? Ведь есть поверхность Римана и мнимые числа. Насколько здесь можно использовать похожий подход чтобы доказать обратное ? Тор может "перетекать" в шар и обратно. Я имею ввиду что есть класс задач у которых решение зависит от порядка мерности пространства. Применительно к 3 мерному пространству решение одно, а с учётом 4 мерного пространства решение другое.
По моему в конце Вы даже сами не поняли что сказали😉
Нет, даже я понял ;)
Наш Мир - скорее всего имеет в своей основе топологию тора, нежели сферы, Иначе-бы он был вырожденным и ничтожным по своей сути. Да вы на себя посмотрите! Вы-же Все торы, если Вас непрырывно преобразовать )))
Но ведь это чушь )) В реальности сфера легко преобразуется в тор и в любую другую форму. Просто она преобразуется по нелинейной логике с изменением системы координат.
а в чем заключается глубинный математический смысл октаэдра и куба?
Тот же вопрос)
Глубинный смысл заключается в теории групп. У обеих фигур одинаковые группы симметрии - то есть такие повороты, которые переводят фигуру в себя
Куб можно вписать в октаэдр, а откаэдр в куб, поэтому при повороте и переводе куба в себя будет переведён и октаэдр
@@bluepen2637ответил на вопрос
Все "сложные" задачки в этом "Торовом" Мире имёют ровно одну меру сложности. Потому P=NP А то, что Мы пока не нашли непрерывного преобразования задачи NP к P (проблемка разрешимости КНФ формулы - она же загадочка про инвариант в этой формуле)- дак это пока только наши местячковые проблемки...
Iz tora IZKUSTVINNIM OBRAZOM delat kub, eto kak dakazivat, chto kartoshka - eto ne jabloko!
Непонятный пример, я граней 51 насчитал, а то "это внутри, а это как бы внутри, а ребра рисуем не внутри".....Кручу-верчу запутать хочу. Идею то я понял, но как пример лучше взять сферическую лошадь)))
Ну и дополню, футбольный мяч состоит из разных пятиугольничков, - 1 маленький и вокруг 5 побольше))
футбольный мяч состоит из 12 пятиугольников и неважно сколько шестиугольников.
Лёха ну я не знаю как это происходит , но вот и другие мячики быть могут . twitter.com/Biven95034302/status/1272075769146155008?s=09
даешь скобки
Из десяти склеенных кубов можно надуть только длинный цилиндр с полусферами по краям .А говорить,что мы надули тор из кубов - я не согласна с этим. По моим рассуждениям тор можно надуть не из кубов, а из усеченных пирамид, у которых основаниями являются полусферы,причем одна выпуклая,а вторая вогнутая. И именно они ,эти полусферы, имеют такое соотношение количества вершин,граней и рёбер, которое полностью соответствие нашей этой формуле.
Бред... А давайте каждый атом внутри круга считать "системой". С 9 класса математика начинает обсиратся вводя свои вводные потипу х считаем за это а давайте представим то и то равно этому-подгон под отввет
1 А давайте
2 С 9 класса
3 обсиратся
4 обсиратся вводя
5 вводя свои вводные
6 потипу
7 потипу х
8 потипу х считаем
9 а давайте
10 этому-подгон
11 отввет
И это не считая чисто смысловых и семантических.
И это в трех предложениях.
Что там математика - даже письмо и чтение из программы начальной школы не освоены.
Зачем вам подорожная, вы же неграмотны.