When Should You Use L1/L2 Regularization

Поделиться
HTML-код
  • Опубликовано: 7 янв 2025

Комментарии •

  • @hanipmanju
    @hanipmanju Год назад

    Wow thank you for this video!!! this 8min video was better than my instructor's 8hour class on the same topic.

  • @oo_wais
    @oo_wais 2 года назад +1

    the model that lets you use both L1 and L2 regularization techniques is called Elastic Net. it has an extra parameter which takes values in range of 0 and 1. I just read about it yesterday in a book. Anyway, thanks for this great series, i am a complete beginner to NNs, and this series is helping me a lot in understanding the big picture and all the basic concepts and procedures of NNs.

    • @bay-bicerdover
      @bay-bicerdover Год назад

      not in range of 0 and 1 but 0 and pos. inf.

  • @NisseOhlsen
    @NisseOhlsen Год назад

    The goal of regularization is to spread out the transfer from one layer to the next to as many connections as possible, thereby forcing the network to consider many aspects of the connection between the input and output. This is done by penalizing 'tunnelling' through few connections. And that is exactly that penalizing large weights does.

  • @bay-bicerdover
    @bay-bicerdover Год назад

    5:40'da parametrenin adini "alpha" diye belirtmissiniz, λ degil mi dogrusu?

  • @nasioulicious
    @nasioulicious 2 года назад

    Thank you Misra.Great content!

    • @misraturp
      @misraturp  2 года назад

      You're very welcome!

  • @andresg3110
    @andresg3110 2 года назад +1

    Ok I subscribed! Like I'm a simple NN I see talent I converge to my optimum solution

  • @ranjanpal7217
    @ranjanpal7217 Год назад

    Amazing explanation

  • @kylmaz5782
    @kylmaz5782 Год назад

    Mısra Hanım merhabalar. Örneklem sayısı az olan bir veri seti ile Ridge regresyon yöntemini kullanarak bir model oluşturmak istiyorum. Ancak modeli oluştururken çözümü el ile yapacağım. Bu konuda yardımcı olabilir misiniz?

  • @wut4100
    @wut4100 7 месяцев назад

    L1 was solid, I wish L2 was explained as well as L1.

  • @grekiki
    @grekiki 9 месяцев назад

    Why can't I use alpha>1? Also doesn't this fail for networks with batchnorm for example?