Tak - zgadzam się - powinienem o tym wspomnieć. Dla p=0 punkty P1 i P2 byłyby takie same i byłaby tak naprawdę jedna prosta styczna. Źle napisałem trochę treść zadania no i wyszedł taki mały problem podobnie jak dla p=2 i p=-2. Mogłem oczywiście zrobić dziedzinę, że p != 0 aby były dwa punkty przecięcia - to byłoby sensownie zapisane. Dziękuję za czujność i słuszną uwagę.
Matemaksie wykonałeś kawał dobrej roboty na tym kanale ale ośmielę się zauważyć że mógłbyś również nakręcić filmik w którym przedtawisz geometryczną tzn. wielowymiarową interpretację pochodnej. Żeby ludzie rozumieli to intuicyjnie.
Dla początkujących okej, wystarczy. Ale dla bardziej dociekliwych zdecydowanie za mało gdyż nie przedstawiono geometrycznej interpretacji pochodnej a jedynie na wykresie kartezjańskim oraz liczbowo. Generalnie pochodna w ujęciu geometrycznym czyli wielowymiarowym to dążący do zera przyrost wartości. Weź bardzo dobrze zatemperowany ołówek, ostry jak igła, najlepiej techniczny taki z wkładanym grafitem. Idąc od lewej do prawej narysuj odcinek AB o długości np. 5 cm. Następnie przedłuż ten odcinek w prawo o 1 mm do punktu C. Czyli odcinek AC będzie o 1 mm dłuższy od odcinka AB i odcinek AB będzie się zawierał na odcinku AC. Następnie bazując na odcinku AB narusuj kwadrat o boku AB. Analogicznie postąp z odcinkiem AC. Otrzymasz dwa kwadraty. Jeden o boku AB oraz drugi o boku AC. Kwadrat o boku AB będzie miał pole powierzchni trochę mniejsze od kwadratu o boku AC oraz będzie się znajdował wewnątrz kwadratu o boku AC i jego dwa boki będą leżały na dwóch bokach kwadratu AC. Następnie górny bok kwadratu AB przedłuż o 1 mm w prawo tak aby zetknął się z prawym bokiem kwadratu AC. Następnie prawy bok kwadratu AB przedłuż do góry również o 1 mm tak żeby zetknął się z górnym bokiem kwadratu AC. Teraz przyjrzyj sie rysunkowi i co widzisz. Na rysunku masz 4 jednolite figury geometryczne. 1 kwadrat o boku AB (5 cm), 2 prostokąty każdy o długości AB (5 cm) i szerokości 1mm, 1 kwadrat o boku 1mm. Czyli 1 2 1, czyli liczby z 3 wiersza Trójkąta Pascala. Teraz odpowiedz sobie na pytanie: CO TO JEST POCHODNA? Oczywiście pochodna to najmniejszy możliwy przyrost wartości lub inaczej przyrost dążący do 0. Matematycznym zapisem figury geometrycznej jaką jest kwadrat jest x*2 gdzie x to długość boku tego kwadratu. Pochodną - czyli przyrostem dążącym do 0 - dla kwadratu x*2 będzie 2x. Czyli dążący do 0 przyrost pola powierzchni kwadratu będzie dążył do podwójnej długości boku x tego kwadratu czyli będzie dążył do 2x. Gdybyś na samym początku przedłużył odcinek AB nie o 1 mm ale o 0,5 mm to zobaczysz że te dwa prostokąty "stają się" odcinkami AB czyli bokami kwadratu AB. Natomiast ten malutki "kwadracik" znika, staje się punktem. Dlatego właśnie pochodna kwadratu x*2 = 2x. Idąc dalej tym tokiem rozumowania możemy zobaczyć jak przedstawia się graficzna interpretacja pochodnej dla bryły trój-wymiarowej czyli sześcianu. Matematyczny zapis sześcianu to x*3, natomiast pochodna sześcianu to 3x*2. Czyli dążący do 0 przyrost sześcianu będzie dążył do trzech kwadratów o boku x. Aby to zobaczyć bazując na rysunku który już wykonałeś narysuj sześcian. Otrzymasz 1 sześcian o boku AB (5 cm), 3 prostopadłościany (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm, 3 prostopadłościany (słupy) o podstawie kwadratu o boku 1 mm i wysokości AB (5 cm), 1 sześcian o boku 1mm. Czyli 1 3 3 1, czyli liczby z 4 wiersza Trójkąta Pascala. Im mniejszy będzie przyrost odcinka bazowego na którym budujemy sześcian tym większe znaczenie tzn. udział w całkowitym przyroście bryły będą miały te 3 prostopadłościany (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm. Pozostałe 3 prostopadłościany (słupy) o podstawie kwadratu o boku 1 mm i wysokości AB (5 cm) będą stawały się "igłami" i ich wielkość względem tych 3 prostopadłościanów (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm będzie maleć. Natomiast ten malutki sześcianik o boku 1 mm zacznie znikać. Dlatego właśnie pochodna sześcianu x*3 = 3x*2. Tak samo dla bryły czterowymiarowej czyli tesseraktu. Ale to już wymaga niezłej wyobraźni przestrzennej. Tesseraktu dotyczy 5 wiersz z trójkąta Pascala.
3 dni do matury, a ja znajduję ten kurs i oglądam wszystkie lekcje po kolei na prędkości 1,5 :D Ten kurs to praktycznie jedyne moje przygotowanie do matury rozszerzonej z matematyki. Pomimo tego, podstawę napisałem prawdopodobnie na 98%, to z rozszerzenia nie umiałem prawie nic. BTW najlepiej ogląda się na prędkościach 1,25 i 1,5, a obejrzenie wszystkich lekcji na prędkości 1,5 trwa 13h.
Błąd? Jakkolwiek nie jestem wyjadaczem w tej materii, to jednak mam tu wątpliwość. Czy w zadaniu 1 nie powinna być jednak w liczniku odwrotna kolejność odejmowania: pochodna mianownika x licznik - pochodna licznika x mianownik, a więc: x^3 · 1 - 3x^2 · (x+1) Tako rzecze quotient rule (jakkolwiek to się nazywa po polsku).
Fajnie by było, jakbyś jeszcze zdążył zrobić monotoniczność, bo znajdowanie ekstremów to raczej łatwe jest i przewijało się wcześniej, a optymalizację to i tak trzeba po prostu przejrzeć z niej zadania. Pozdrawiam gorąco!
O siema. Ty no podstawa na 94/6% o ile pamiętam, a rozszerzenie na 56%. 😎 jak na naukę dzień przed uważam to za sukces. Pozdrawiam serdecznie ze studiów humanistycznych xD
Ten głos to jak miód na moje serce :')
Dziękuje za ten materiał!
Powodzenia na maturze rozszerzonej z matmy dla wszystkich maturzystów 2021
Powodzonka! ciśniemy z tym!
Powodzonka
Powodzenia
Są różniczki na polskiej maturze?
@@user-ys8dc2ni8z rachunek różniczkowy jest na maturze rozszerzonej
Zawsze będę wdzięczna za Pana prace ❤ dzięki niej zrozumialam wiele ciężkich dla mnie zagadnień ❤
Za 2 godziny rozszerzenie. Matemaksis módl się za nami
A czy w tym zadaniu 4 dla p=0 też proste nie powinny być równoległe ?
Też mi się tak wydaje :p
wtedy będzie tylko 1 styczna
niemniej jednak powinno być o tym wspomniane podczas rozwiązywania równania albo uwzględnione w dziedzinie
Tak - zgadzam się - powinienem o tym wspomnieć. Dla p=0 punkty P1 i P2 byłyby takie same i byłaby tak naprawdę jedna prosta styczna. Źle napisałem trochę treść zadania no i wyszedł taki mały problem podobnie jak dla p=2 i p=-2. Mogłem oczywiście zrobić dziedzinę, że p != 0 aby były dwa punkty przecięcia - to byłoby sensownie zapisane. Dziękuję za czujność i słuszną uwagę.
Dziękuję bardzo za pomoc w przygotowaniu do matury 💙 ratuje Pan niejednego maturzystę 😅
Jesteś wielki :)
Matemaksie wykonałeś kawał dobrej roboty na tym kanale ale ośmielę się zauważyć że mógłbyś również nakręcić filmik w którym przedtawisz geometryczną tzn. wielowymiarową interpretację pochodnej. Żeby ludzie rozumieli to intuicyjnie.
Prosto wytłumaczone i można iść robić zadania, twoje filmy dużo mi pomogły
Dla początkujących okej, wystarczy. Ale dla bardziej dociekliwych zdecydowanie za mało gdyż nie przedstawiono geometrycznej interpretacji pochodnej a jedynie na wykresie kartezjańskim oraz liczbowo. Generalnie pochodna w ujęciu geometrycznym czyli wielowymiarowym to dążący do zera przyrost wartości.
Weź bardzo dobrze zatemperowany ołówek, ostry jak igła, najlepiej techniczny taki z wkładanym grafitem. Idąc od lewej do prawej narysuj odcinek AB o długości np. 5 cm. Następnie przedłuż ten odcinek w prawo o 1 mm do punktu C. Czyli odcinek AC będzie o 1 mm dłuższy od odcinka AB i odcinek AB będzie się zawierał na odcinku AC. Następnie bazując na odcinku AB narusuj kwadrat o boku AB. Analogicznie postąp z odcinkiem AC. Otrzymasz dwa kwadraty. Jeden o boku AB oraz drugi o boku AC. Kwadrat o boku AB będzie miał pole powierzchni trochę mniejsze od kwadratu o boku AC oraz będzie się znajdował wewnątrz kwadratu o boku AC i jego dwa boki będą leżały na dwóch bokach kwadratu AC. Następnie górny bok kwadratu AB przedłuż o 1 mm w prawo tak aby zetknął się z prawym bokiem kwadratu AC. Następnie prawy bok kwadratu AB przedłuż do góry również o 1 mm tak żeby zetknął się z górnym bokiem kwadratu AC. Teraz przyjrzyj sie rysunkowi i co widzisz. Na rysunku masz 4 jednolite figury geometryczne. 1 kwadrat o boku AB (5 cm), 2 prostokąty każdy o długości AB (5 cm) i szerokości 1mm, 1 kwadrat o boku 1mm. Czyli 1 2 1, czyli liczby z 3 wiersza Trójkąta Pascala. Teraz odpowiedz sobie na pytanie: CO TO JEST POCHODNA? Oczywiście pochodna to najmniejszy możliwy przyrost wartości lub inaczej przyrost dążący do 0. Matematycznym zapisem figury geometrycznej jaką jest kwadrat jest x*2 gdzie x to długość boku tego kwadratu. Pochodną - czyli przyrostem dążącym do 0 - dla kwadratu x*2 będzie 2x. Czyli dążący do 0 przyrost pola powierzchni kwadratu będzie dążył do podwójnej długości boku x tego kwadratu czyli będzie dążył do 2x. Gdybyś na samym początku przedłużył odcinek AB nie o 1 mm ale o 0,5 mm to zobaczysz że te dwa prostokąty "stają się" odcinkami AB czyli bokami kwadratu AB. Natomiast ten malutki "kwadracik" znika, staje się punktem. Dlatego właśnie pochodna kwadratu x*2 = 2x.
Idąc dalej tym tokiem rozumowania możemy zobaczyć jak przedstawia się graficzna interpretacja pochodnej dla bryły trój-wymiarowej czyli sześcianu. Matematyczny zapis sześcianu to x*3, natomiast pochodna sześcianu to 3x*2. Czyli dążący do 0 przyrost sześcianu będzie dążył do trzech kwadratów o boku x. Aby to zobaczyć bazując na rysunku który już wykonałeś narysuj sześcian. Otrzymasz 1 sześcian o boku AB (5 cm), 3 prostopadłościany (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm, 3 prostopadłościany (słupy) o podstawie kwadratu o boku 1 mm i wysokości AB (5 cm), 1 sześcian o boku 1mm. Czyli 1 3 3 1, czyli liczby z 4 wiersza Trójkąta Pascala. Im mniejszy będzie przyrost odcinka bazowego na którym budujemy sześcian tym większe znaczenie tzn. udział w całkowitym przyroście bryły będą miały te 3 prostopadłościany (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm. Pozostałe 3 prostopadłościany (słupy) o podstawie kwadratu o boku 1 mm i wysokości AB (5 cm) będą stawały się "igłami" i ich wielkość względem tych 3 prostopadłościanów (płyty albo kafle) o podstawie kwadratu o boku AB (5 cm) i wysokości 1 mm będzie maleć. Natomiast ten malutki sześcianik o boku 1 mm zacznie znikać. Dlatego właśnie pochodna sześcianu x*3 = 3x*2.
Tak samo dla bryły czterowymiarowej czyli tesseraktu. Ale to już wymaga niezłej wyobraźni przestrzennej. Tesseraktu dotyczy 5 wiersz z trójkąta Pascala.
@@stefanbanach3562 no wiadomo
Ten kurs to jedyne moje przygotowanie do matury rozszerzonej zobaczymy jak pojdzie! Dzieki matemaks! :D
I jak poszło? :D
@@bandolero6632 chyba nie poszlo xD Zauważyłem, że jedynie odpisują osoby które miały jakiś sensowny wynik.
@@Haryyyy so true :D
Do matury dwa dni, jest Pan moją jedyną już nadzieją xD
same
Same XDDDD
jutro o 9 matura, pora na nauke XD
22 dzień przed maturą jest uczone, fajnie ze nie mialem pochodnej w szkole
I jak poszło? xd
Niecały miesiąc do matury. Zobaczymy co z tego wyjdzie ;)
3 dni do matury a ja się pochodnej i stycznej się uczę😁
3 dni do matury, a ja znajduję ten kurs i oglądam wszystkie lekcje po kolei na prędkości 1,5 :D Ten kurs to praktycznie jedyne moje przygotowanie do matury rozszerzonej z matematyki. Pomimo tego, podstawę napisałem prawdopodobnie na 98%, to z rozszerzenia nie umiałem prawie nic.
BTW najlepiej ogląda się na prędkościach 1,25 i 1,5, a obejrzenie wszystkich lekcji na prędkości 1,5 trwa 13h.
10 godzin do matury i tez wlasnie zaczynam
Powodzenia wam😁
Nie tylko ty~
Dokladnie na 1.5 i 1.25 najlepiej sie oglada a jak sie cos nie rozumie to zawsze mozna zwolnic i sobie powtorzyc :)
To ma jakieś zastosowanie? Czy ktoś to sobie odkrył i ogłosił odkrycie? A jesli zamiast prostej do stycznej jest okrąg? Odkrył to ktoś? Wygrałem?
Robisz Super robote ;)
Błąd? Jakkolwiek nie jestem wyjadaczem w tej materii, to jednak mam tu wątpliwość. Czy w zadaniu 1 nie powinna być jednak w liczniku odwrotna kolejność odejmowania:
pochodna mianownika x licznik - pochodna licznika x mianownik, a więc:
x^3 · 1 - 3x^2 · (x+1)
Tako rzecze quotient rule (jakkolwiek to się nazywa po polsku).
Dziękii Matemaks!
dajesz mi na jutro nadzieje
9 godzin do matury a ja chce to zrozumieć :)
i jak tam mordko, udało się?
Wlasnie, jaki wynik, Matemaks pomogl? :D
bump
Chyba słabo
No i jak było?
Fajnie by było, jakbyś jeszcze zdążył zrobić monotoniczność, bo znajdowanie ekstremów to raczej łatwe jest i przewijało się wcześniej, a optymalizację to i tak trzeba po prostu przejrzeć z niej zadania. Pozdrawiam gorąco!
matura za 3 godziny a ja dopiero się tego uczę 🤠
jak ci poszło?
O siema. Ty no podstawa na 94/6% o ile pamiętam, a rozszerzenie na 56%. 😎 jak na naukę dzień przed uważam to za sukces. Pozdrawiam serdecznie ze studiów humanistycznych xD
dobra kursik skończony mam nadzieje że jutrzejsza matura siądzie jak słowo boże
no tak xd wlasnie
Dziękuję
Trzeba pisać że p jest różny od 2 i -2, skoro wcześniej założono że x jest różny od 2 i -2 , a x to przecież -p?
w 4) chyba jeszcze p moze byc rowne 0?
jestes super!
Gdzie część 52 53??
prywatne, ukryte
W 4) już wyrzuciłeś 2 i -2 z dziedziny f(x), więc na przypadek p=2 v p=-2 już jesteś 'zabezpieczony'
Nie. Odrzucone zostały dla x, a nie p.
I tu sie konczy wedrowka wielu ludzi
13:05 a skąd wiadomo ze funkcja bedzie miała akurat 2 ekstrema
Matemaksiu, jak się czujesz z tym, że maturzyści stawiają Ci ołtarzyki? :D
Ratujesz mi dupe, bo zaraz kartkówka A mnie WGL na lekcjach z tego nie było 😅😳
Trzymajcie kciuki 🥺🖤
Pozdro 😂❤
kocham cie
Ciekawe, jutro rano będę miał okazje przetestować xd
2h to maturki roz a ja powtarzam bo czuję że będzie 🥹
mi jeszcze wyszło p=0
Witam, dlaczego pozostałe filmy z pochodnych są prywatne, proszę o odpowiedź.
są w ramach płatnego kursu
@@wiktorwolf8381jesteś wilkołakiem?
@@realmatixx jestes cejrowskim z jednym okiem?
czego w 3 zadaniu y = 0 w 1 pkt pp a w 2 pkt pp x - 0 CZEGO???!
>> 6:50 11:56 < )
16:32 nie mnożymy 2 razy 6
6.48
32:55 p nie musi być jeszcze zero?!
Rok do matury
Nie zdam
na luzie zdasz
I?
złoty człowiek
1 rok do matury a ja się stycznej uczę
1 dzien do matury a ja sie stycznej ucze
Nexum a ja sie wlasnie klade spac, bycie wypoczetym jest lepsze niz zakuwanie do ostatniej chwili!