Как работать со стримом в записи? - Пифагор начинает решать задачу #1 - Ставим паузу - Решаем задачу самостоятельно - Снимаем паузу - Смотрим как правильно и исправляем (если решили неправильно) и т.д.
Начало - 00:00 Задача 1 - 02:20 В треугольнике ABC угол A равен 56°, углы B и C- острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах. Задача 2 - 04:52 Даны векторы a ⃗ (0;3), b ⃗ (-2;4) и c ⃗ (4;-1). Найдите длину вектора a ⃗+2b ⃗+c ⃗. Задача 3 - 07:40 Шар, объем которого равен 35π, вписан в куб. Найдите объём куба. Задача 4 - 11:12 В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады. Задача 5 - 13:55 В коробке 11 синих, 6 красных и 8 зелёных фломастеров. Случайным образом выбирают два фломастера. Найдите вероятность того, что окажутся выбраны один синий и один красный фломастеры. Задача 6 - 20:23 Найдите корень уравнения ∛(x+3)=5. Задача 7 - 22:49 Найдите значение выражения (5^(3/5)∙7^(2/3) )^15/35^9 . Задача 8 - 25:20 На рисунке изображён график функции y=f(x), определённой на интервале (-4;13). Определите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=14. Задача 9 - 28:41 Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p (тыс. руб.) задаётся формулой q=190-10p. Выручка предприятия за месяц r (в тыс. руб.) вычисляется по формуле r(p)=q∙p. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 700 тыс. руб. Ответ приведите в тыс. руб. Задача 10 - 32:06 Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго? Задача 11 - 37:20 На рисунке изображён график функции вида f(x)=log_ax. Найдите значение f(8). Задача 12 - 41:04 Найдите точку минимума функции y=(x^2-9x+9)∙e^(x+27). Задача 13 - 46:15 а) Решите уравнение 49^(cos^2 x)=7^(√2 cosx ). б) Укажите корни этого уравнения, принадлежащие отрезку [2π;3π]. Разбор ошибок 13 - 57:20 Задача 15 - 01:01:22 Решите неравенство (2^(x+1)-17∙2^(2-x))/(2^x-2^(6-x) )≥1. Разбор ошибок 15 - 01:11:40 Задача 16 - 01:21:34 В июле 2025 года планируется взять кредит на десять лет в размере 800 тыс. рублей. Условия его возврата таковы: - каждый январь долг будет возрастать на r% по сравнению с концом предыдущего года; - с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; - в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; - в конце 2030 года долг составит 200 тыс. руб; - в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; - к июлю 2035 года долг должен быть выплачен полностью. Найдите r, если общая сумма выплат после полного погашения кредита будет равна 1480 тыс. рублей. Задача 18 - 01:48:53 Найдите все значения a, при каждом из которых уравнение x^2-2x-6a+a^2=|6x-2a| имеет ровно два различных корня. Задача 19 - 02:22:38 В каждой клетке квадратной таблицы 5×5 стоит натуральное число, меньшее 6. Вася в каждом столбце находит сумму чисел и из полученных сумм выбирает наименьшую. Петя в каждой строке находит сумму чисел и из полученных сумм выбирает наименьшую. а) Может ли число у Пети получиться в два раза больше, чем число у Васи? б) Может ли число у Пети получиться в пять раз больше, чем число у Васи? в) В какое наибольшее число раз число у Пети может быть больше, чем число у Васи? Задача 17 - 02:34:50 В прямоугольном треугольнике ABC точки M и N- середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L. а) Докажите, что треугольники AML и BLC подобны. б) Найдите отношение площадей этих треугольников, если cos〖∠BAC〗=7/25. Задача 14 - 02:53:27 На ребре AA_1 прямоугольного параллелепипеда ABCDA_1 B_1 C_1 D_1 взята точка E так, что A_1 E:EA=3:1, на ребре BB_1- точка F так, что B_1 F:FB=1:3, а на ребре B_1 C_1- точка T так, что B_1 T:TC_1=1:2. Известно, что AB=4, AD=3, AA_1=4. а) Докажите, что плоскость EFT проходит через вершину D_1. б) Найдите угол между плоскостью EFT и плоскостью BB_1 C_1.
Как работать со стримом в записи?
- Пифагор начинает решать задачу #1
- Ставим паузу
- Решаем задачу самостоятельно
- Снимаем паузу
- Смотрим как правильно и исправляем (если решили неправильно)
и т.д.
в какой программе рисуешь?)
Начало - 00:00
Задача 1 - 02:20
В треугольнике ABC угол A равен 56°, углы B и C- острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.
Задача 2 - 04:52
Даны векторы a ⃗ (0;3), b ⃗ (-2;4) и c ⃗ (4;-1). Найдите длину вектора a ⃗+2b ⃗+c ⃗.
Задача 3 - 07:40
Шар, объем которого равен 35π, вписан в куб. Найдите объём куба.
Задача 4 - 11:12
В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.
Задача 5 - 13:55
В коробке 11 синих, 6 красных и 8 зелёных фломастеров. Случайным образом выбирают два фломастера. Найдите вероятность того, что окажутся выбраны один синий и один красный фломастеры.
Задача 6 - 20:23
Найдите корень уравнения ∛(x+3)=5.
Задача 7 - 22:49
Найдите значение выражения (5^(3/5)∙7^(2/3) )^15/35^9 .
Задача 8 - 25:20
На рисунке изображён график функции y=f(x), определённой на интервале (-4;13). Определите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=14.
Задача 9 - 28:41
Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p (тыс. руб.) задаётся формулой q=190-10p. Выручка предприятия за месяц r (в тыс. руб.) вычисляется по формуле r(p)=q∙p. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 700 тыс. руб. Ответ приведите в тыс. руб.
Задача 10 - 32:06
Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Задача 11 - 37:20
На рисунке изображён график функции вида f(x)=log_ax. Найдите значение f(8).
Задача 12 - 41:04
Найдите точку минимума функции y=(x^2-9x+9)∙e^(x+27).
Задача 13 - 46:15
а) Решите уравнение 49^(cos^2 x)=7^(√2 cosx ).
б) Укажите корни этого уравнения, принадлежащие отрезку [2π;3π].
Разбор ошибок 13 - 57:20
Задача 15 - 01:01:22
Решите неравенство (2^(x+1)-17∙2^(2-x))/(2^x-2^(6-x) )≥1.
Разбор ошибок 15 - 01:11:40
Задача 16 - 01:21:34
В июле 2025 года планируется взять кредит на десять лет в размере 800 тыс. рублей. Условия его возврата таковы:
- каждый январь долг будет возрастать на r% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо оплатить одним платежом часть долга;
- в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года;
- в конце 2030 года долг составит 200 тыс. руб;
- в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2035 года долг должен быть выплачен полностью.
Найдите r, если общая сумма выплат после полного погашения кредита будет равна 1480 тыс. рублей.
Задача 18 - 01:48:53
Найдите все значения a, при каждом из которых уравнение x^2-2x-6a+a^2=|6x-2a| имеет ровно два различных корня.
Задача 19 - 02:22:38
В каждой клетке квадратной таблицы 5×5 стоит натуральное число, меньшее 6. Вася в каждом столбце находит сумму чисел и из полученных сумм выбирает наименьшую. Петя в каждой строке находит сумму чисел и из полученных сумм выбирает наименьшую.
а) Может ли число у Пети получиться в два раза больше, чем число у Васи?
б) Может ли число у Пети получиться в пять раз больше, чем число у Васи?
в) В какое наибольшее число раз число у Пети может быть больше, чем число у Васи?
Задача 17 - 02:34:50
В прямоугольном треугольнике ABC точки M и N- середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если cos〖∠BAC〗=7/25.
Задача 14 - 02:53:27
На ребре AA_1 прямоугольного параллелепипеда ABCDA_1 B_1 C_1 D_1 взята точка E так, что A_1 E:EA=3:1, на ребре BB_1- точка F так, что B_1 F:FB=1:3, а на ребре B_1 C_1- точка T так, что B_1 T:TC_1=1:2. Известно, что AB=4, AD=3, AA_1=4.
а) Докажите, что плоскость EFT проходит через вершину D_1.
б) Найдите угол между плоскостью EFT и плоскостью BB_1 C_1.
Комент в поддержку канала
+
Евгений, я вас так люблю, очень скучаю по вашим стримам и по вашему голосу😢
Сожалею
Спасибо за каждый эфир, супер
Вы самый лучший на свете человек
У вас очень красивый голос❤
Треуг. СМВ равнобедренный, MN и высота и медиана, след биссектриса и тд
батя профиля
отец