Dynamic Resource Allocation, Do More With Your Cluster (Luc Bourlier)

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 6

  • @vinothsmart1
    @vinothsmart1 6 лет назад +1

    Can anyone answer to that last question.. That is damn good question...?

    • @raghushining
      @raghushining 6 лет назад

      In addition to writing shuffle files, executors also cache data either on disk or in memory. When an executor is removed, however, all cached data will no longer be accessible. To mitigate this, by default executors containing cached data are never removed. You can configure this behavior with spark.dynamicAllocation.cachedExecutorIdleTimeout. In future releases, the cached data may be preserved through an off-heap storage similar in spirit to how shuffle files are preserved through the external shuffle service.
      From official spark documentation

  • @abajalaliabajalshekhpakist4247
    @abajalaliabajalshekhpakist4247 6 лет назад

    A

  • @jay-rbangit2910
    @jay-rbangit2910 5 лет назад +1

    Hard to understand the way he speak. Its like he’s mumbling or something

    • @مشاهير-ب3ص
      @مشاهير-ب3ص 4 года назад

      English à la française

    • @deepakzambare352
      @deepakzambare352 4 года назад

      Hello Jay, if u hve material (like ppts PDFs videos or any other)regarding the allocation of resources in the cloud for media streaming application do send it to me on dzambare@rediffmail.com