A Curious Cubic | Algebra with Polynomials

Поделиться
HTML-код
  • Опубликовано: 15 дек 2024

Комментарии • 12

  • @yoav613
    @yoav613 6 месяцев назад +2

    "And then i'll show you the second method that by the way dose not work.." 😂😂 man you are so funny💯💯

  • @DonRedmond-jk6hj
    @DonRedmond-jk6hj 4 месяца назад

    Almost got Bombelli's trig soln for cubics in here. In this case you would switch to hyperbolic cosine since cosh and cos have similar identities.

  • @stvp68
    @stvp68 6 месяцев назад

    I’m convinced that students who are afraid of math have generally never mastered fractions

  • @ProficiencyMusic
    @ProficiencyMusic 6 месяцев назад

    the 2nd method does work,, you can find the real solution through it.

  • @MrGeorge1896
    @MrGeorge1896 6 месяцев назад

    arc cos (2) = 1.31695 i so α = 0.43898 i and cos(α) = 1.09791. So yes, we can find the real solution with complex trigonometry. 😀

    • @NadiehFan
      @NadiehFan 6 месяцев назад +1

      You can do a hyperbolic substitution and get exact answers as well. See my main comment. Note: you may have to change the sorting order of the comments to _newest first_ if my comment doesn't show up with the default sorting order.

  • @walterwen2975
    @walterwen2975 4 месяца назад

    A Curious Cubic: 4x³ - 3x - 2 = 0; x = ?
    x ≠ 0, x ≠ ± 1; 2(4x³ - 3x - 2) = 0, 8x³ - 6x - 4 = (2x)³ - 3(2x) - 4 = 0
    Let: y = 2x = ³√a + ³√b, a, b ϵR; 8x³ - 6x - 4 = y³ - 3y - 4 = 0, y ϵR
    y³ - 3y - 4 = (³√a + ³√b)³ - 3(³√a + ³√b) - 4 = 0
    [a + b + 3(³√ab)(³√a + ³√b)] - 3(³√a + ³√b) - 4 = (a + b - 4) + 3(³√a + ³√b)(³√ab - 1) = 0
    ³√a + ³√b ≠ 0, a + b - 4 = 0, a + b = 4; ³√ab - 1 = 0, ab = 1
    (a - b)² = (a + b)² - 4ab = 4² - 4 = 12 = (2√3)²; a - b = ± 2√3, a + b = 4
    2a = 4 ± 2√3, a = 2 ± √3; b = 4 - a = 4 - (2 ± √3) = 2 -/+ √3
    2x = ³√a + ³√b = ³√(2 + √3) + ³√(2 - √3) = ³√(2 - √3) + ³√(2 + √3); ab = 1
    x = [³√(2 + √3) + ³√(2 - √3)]/2
    Answer check:
    2(4x³ - 3x - 2) = 0, y = 2x: y³ - 3y - 4 = 0, y = ³√a + ³√b, a = 2 + √3, b = 2 - √3
    a + b = 4, ab = 1: y³ = (³√a + ³√b)³ = a + b + 3(³√ab)(³√a + ³√b) = 4 + 3y
    y³ - 3y - 4 = (4 + 3y) - 3y - 4 = 0; Confirmed
    Final answer:
    x = [³√(2 + √3) + ³√(2 - √3)]/2

  • @davidellis1929
    @davidellis1929 6 месяцев назад

    If the trigonometric form has no real solutions, how does this reflect on the real root of the cubic?

    • @NadiehFan
      @NadiehFan 6 месяцев назад +1

      Not at all. Note that cos(it) = cosh(t). Instead of working with complex trigonometric functions you can do a hyperbolic substitution to solve this equation elegantly. See my main comment for a full explanation. Note: you may have to change the sorting order of the comments to _newest first_ for my main comment to show up.

  • @RikiFaridoke
    @RikiFaridoke 6 месяцев назад

    Your problem Will be simple if you using trigonometry equation, so please try it sir.