2017 Feature Pyramid Network for Object Detection (FPN) paper summary

Поделиться
HTML-код
  • Опубликовано: 16 янв 2025

Комментарии • 39

  • @nunorodrigues3195
    @nunorodrigues3195 3 года назад +23

    By far the clearest explanation, both logic and implementation wise, of an FPN.

  • @joliver1981
    @joliver1981 3 года назад +1

    So I end up with 4 predictions in the end? Is that right? How should I use this output in practice?

  • @MrSkifOK
    @MrSkifOK 4 года назад +5

    You help me a lot in deeper understanding! Thank you =)

  • @TheSpecial43004
    @TheSpecial43004 2 года назад

    instant subscribe, very clear in depth explanation, thank you

  • @swedenontwowheels
    @swedenontwowheels Год назад

    Great content! Very well done! I like how the concept is neatly and concisely presented without overwhelming information. Thank you very much for your effort in making this video.

  • @zehra2334
    @zehra2334 2 года назад

    Keep making the videos! Very nice Hao Tsui

  • @sourabhpatil9406
    @sourabhpatil9406 3 года назад

    Thanks for explaining! Will always be grateful. All the best.

  • @MasterFX2000
    @MasterFX2000 2 года назад

    Very good explanation. Thank you!

  • @annestephens553
    @annestephens553 4 года назад +2

    This was brilliantly explained - thank you so much

  • @lovekesh88
    @lovekesh88 3 года назад +1

    You earned a subscriber today. Thanks

  • @nikunj.taneja
    @nikunj.taneja 4 года назад +1

    Exactly what I was looking for, thanks! Keep making the videos man :)

  • @ashishbhatnagar9590
    @ashishbhatnagar9590 4 года назад +1

    Very informative and helpful video. Thanks a lot for sharing.

  • @originalandfunnyname8076
    @originalandfunnyname8076 2 года назад

    Great explanation, thanks. You're videos really help a lot, I hope you'll do more of these summaries soon!

  • @engintekin2530
    @engintekin2530 3 года назад

    you did really good job explaining this paper in 17min. Thanks

  • @Banefane
    @Banefane 2 года назад

    Thank you very much for this clear and well thought explanation :D!

  • @mudasirulhaque4873
    @mudasirulhaque4873 3 года назад

    The finest explanation, cheers. Thanks for the content big help. :D

  • @sujitha3335
    @sujitha3335 3 года назад

    Thank you sooo much , pls keep posting more videos!!

  • @mohammadyahya78
    @mohammadyahya78 Год назад

    Very helpful. Thank you.

  • @andreestevam131
    @andreestevam131 3 года назад

    Thank you for the clarification, very well explained!

  • @mohaliyet
    @mohaliyet 6 месяцев назад

    Thank you man! 👏

  • @walidaoun43
    @walidaoun43 3 года назад

    Really Excellent explanation, Thanks :)

  •  3 года назад

    This is what im looking for :)) Thanks alot!!!

  • @fpgamachine
    @fpgamachine 3 года назад

    Excellent explanation, thanks. It was not clear to me how can I do to have a single softmax output for example.

  • @shudiptosekharroy651
    @shudiptosekharroy651 3 года назад +1

    this was really helpful! Please keep it up

  • @zukofire6424
    @zukofire6424 Год назад

    Thank you! helps a a lot! :)

  • @macaronminmin
    @macaronminmin 3 года назад

    Thank you for your explanation !

  • @ghassencherni7432
    @ghassencherni7432 3 года назад

    Really good explanation, thank you!

  • @minired4611
    @minired4611 3 года назад

    Thank you so much. 謝謝

  • @deoabhijit5935
    @deoabhijit5935 3 года назад

    Thank you helped me a lot

  • @galileo3431
    @galileo3431 4 года назад

    Great explanation! Highly underrated Channel!
    To give some constructive criticism: Your explanation on the lateral 1x1 convolution may came a little short, considering the importance of this transformation. Your throat clearing makes it even harder to understand. But nonetheless, good work, keep going!

    • @haotsui2720
      @haotsui2720  4 года назад +1

      Thanks a lot for the constructive suggestions! Appreciate it

  • @srikanthgn2969
    @srikanthgn2969 2 года назад

    thank you so much

  • @aisolutions834
    @aisolutions834 3 года назад

    Perfect Hao, I've learned a lot from this high-quality video, I wanna watch all of your videos as being new to computer vision, Btw,
    1. What new paper you wanna break down?
    2. What do you think about Mnasnet?
    3. Are there better object detection models than RetinaNet (fast while accurate)? as that also uses FPN.

  • @aimerninelie2582
    @aimerninelie2582 2 года назад

    Thanks a lot

  • @adityajindal3738
    @adityajindal3738 3 года назад

    Great work buddy!!

  • @goksuceylan8844
    @goksuceylan8844 3 года назад

    thank you brooo

  • @marx427
    @marx427 3 года назад

    Brilliant

  • @moodguo4645
    @moodguo4645 3 года назад

    The best ever seen

  • @santoshkamble1290
    @santoshkamble1290 3 года назад

    Thanks for this explanation!!!