Partitions of a Set | Set Theory

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии • 205

  • @snrikhotso
    @snrikhotso 4 года назад +94

    That was short and straight to the point 🔥 🔥 🔥

    • @WrathofMath
      @WrathofMath  4 года назад +3

      Glad it was clear, thanks for watching!

    • @brylnicoong5556
      @brylnicoong5556 4 года назад +3

      Exactly. Less complicated.

    • @ritikraturi2560
      @ritikraturi2560 4 года назад +1

      @@brylnicoong5556I am assuming in your ques. It is a^2 - c^2 = d^2 - b^2, although its obvious.
      Ans= Equivalence class of (0,0) or [(0,0)] = {(c,d) : (c,d) belongs to RXR(codomain of relation R) and 0^2 - c^2 = d^2 - 0^2}
      Now the eq. Is satisfied for real no.s c and d only when c=d=0.
      Therefore [(0,0)] = { (0,0) }

    • @KP-fd9ev
      @KP-fd9ev 3 года назад +1

      Something that my professor doesn't know how to do....

    • @blackangelinyourarrea
      @blackangelinyourarrea 4 месяца назад

      😂​@@KP-fd9ev

  • @oleevjen-caspersen6200
    @oleevjen-caspersen6200 4 года назад +67

    I really enjoyed the way you explained it, made it easier to understand! Thank you!

    • @WrathofMath
      @WrathofMath  4 года назад

      So glad it helped! You're welcome and thanks for watching!

  • @chukwukelumarvelous9616
    @chukwukelumarvelous9616 2 года назад +7

    Short and straight to the point with simple and concise examples. No overtly complex algebra terminology. Thank you very much for this

    • @WrathofMath
      @WrathofMath  Год назад

      Glad to help, thanks for watching!

  • @EmmanuelTamenut
    @EmmanuelTamenut Год назад +4

    Finally a straightforward and informative explanation! Thank you.

  • @kyusiv9026
    @kyusiv9026 Год назад +5

    the way you make us understand the concept fully, its just amazing, thank you so much

    • @WrathofMath
      @WrathofMath  Год назад

      My pleasure - thanks for watching!

  • @grifo_-cyan7123
    @grifo_-cyan7123 2 года назад +6

    What a fantastic explanation! It was straight to the point. All I needed was the first couple of minutes. Thank you so much!

  • @sharmilap2468
    @sharmilap2468 3 года назад +14

    Your way of explaining is awesome keep going and we want more videos.

    • @WrathofMath
      @WrathofMath  3 года назад +2

      Thank you! More are on the way!

  • @பேராண்டி
    @பேராண்டி Год назад +31

    Two minutes silence for those who choose subtitles 😭💔

  • @mishrashubham007
    @mishrashubham007 2 года назад +4

    Thanks mate. Straight to the point

  • @latedeveloper7836
    @latedeveloper7836 3 года назад +1

    Thanks for this. Very helpful. Might I suggest you leave a little longer between asking the question and giving the answer? I say that because you gave the answer before I could read it all or think, let alone hit the pause button. Just taking my notes below as I go along - if I've misunderstood anything, please feel free to correct in the comments below. Thanks all.
    0:14 Basic concept of a partition
    0:45 Explanation of why is P a partition of S
    *Rules for Partitions*
    1:05 Partitions cannot contain empty subsets
    1:14 All sets in a partition must be subsets of the 'main' set
    1:44 All elements in a set must be included in the partition (and its various subsets)
    1:58 No elements in a set can be included in more than 1 subset in the partition
    Examples
    2:05 Example 1
    2:21 Example 2
    2:47 Example 3
    3:24 Example 4
    3:30 Example 5
    3:47 Example 6
    4:04 Example 7
    Explanations
    4:36 Re-cap on concepts and terminology
    5:20 Full written definition of a partition
    5:42 Key point to remember

  • @jingyiwang5113
    @jingyiwang5113 Год назад +6

    You have explained this important knowledge in a crystal clear way! It is really helpful to me. I will be embracing discrete mathematics this coming semester. And I am super nervous for this. Thank you for your help in helping me understand this point! Thanks!😀

  • @erzphantomhive1
    @erzphantomhive1 3 года назад +7

    Thank you for making this clear and straight to the point. This made it so much easier to understand

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, thanks for watching! I highly recommend my three lessons on Bell numbers, a sort of follow up to this lesson - I think they're a lot of fun! Let me know if you ever have any video requests!
      Counting Partitions of Sets and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Bell Numbers and their Recurrence Relation: ruclips.net/video/sPGudyLalmE/видео.html
      The Proof!: ruclips.net/video/abfCpVASfLM/видео.html

  • @facts-ec4yi
    @facts-ec4yi 2 месяца назад

    Love gems like this on youtube. Very helpful while I'm in university. Thank you!

    • @WrathofMath
      @WrathofMath  2 месяца назад +1

      Thank you for watching - glad it was helpful! Good luck!

  • @jakewatson3369
    @jakewatson3369 Год назад +1

    Thank you! A fine clear understanding better than Zybooks has ever given me!

  • @jsc0625
    @jsc0625 Год назад +1

    The Partition Theorem was in a “review of probability” document for one of my classes and I swear I had never seen it before lol, so this was really helpful to get me up to speed, thank you lots!

  • @kooroshkamjoo209
    @kooroshkamjoo209 3 месяца назад

    short and simple, nice and understandable, this is how you should learn math. thanks man

  • @nazmiepatel720
    @nazmiepatel720 3 месяца назад +1

    The type of explanation I needed. Thank you legend!

    • @WrathofMath
      @WrathofMath  3 месяца назад +1

      Glad it helped, thanks for watching!

    • @nazmiepatel720
      @nazmiepatel720 3 месяца назад +1

      @@WrathofMath My textbook has a different definition for partitions, so what do you think is the best way to deal any questions related to partitions?

  • @koshka02
    @koshka02 2 года назад +1

    Why can't my professor teach like this , this is so easy thank you for making this so straight forward

    • @WrathofMath
      @WrathofMath  2 года назад +1

      So glad it helped, thanks for watching! A few related lessons if you're interested...
      Counting Partitions and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Recurrence Relation for Bell Numbers: ruclips.net/video/sPGudyLalmE/видео.html
      Recurrence proof: ruclips.net/video/abfCpVASfLM/видео.html

  • @tomcat1112k
    @tomcat1112k Год назад

    you explanation helped me to understand partitions more clearly than a formal book. thank you for making videos like this

  • @RabbitKing-o5t
    @RabbitKing-o5t Месяц назад

    Straight to the point 👏👏👏

  • @MaxPicAxe
    @MaxPicAxe 3 года назад

    Definitely one of the best RUclips channels!

    • @WrathofMath
      @WrathofMath  3 года назад

      Thanks a lot, I do my best! Let me know if you have any questions, and if you're looking for more on partitions - I have a few more related videos...
      Counting Partitions and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Recurrence Relation for Bell Numbers: ruclips.net/video/sPGudyLalmE/видео.html
      Recurrence proof: ruclips.net/video/abfCpVASfLM/видео.html

  • @yamatanoorochi3149
    @yamatanoorochi3149 10 месяцев назад

    This video was way better than the shabby uni provided vid thank you

  • @randyrandall1767
    @randyrandall1767 4 года назад

    So much more clear than other videos.
    Thanks.

    • @WrathofMath
      @WrathofMath  4 года назад

      I'm glad it was clear, thanks a lot for watching! Let me know if you ever have any questions!

  • @thestar001Official
    @thestar001Official 3 года назад +1

    Smooth lines.. smooth teaching 👌

  • @robertdowneyjr.3558
    @robertdowneyjr.3558 3 года назад

    You made this look so simple and kinda cool. Thanks from India!

    • @WrathofMath
      @WrathofMath  3 года назад

      Thanks for watching, so glad it helped!

  • @piichuu3596
    @piichuu3596 2 года назад

    Absolutely amazing video. Clear explanation and the presentation is 100/10

  • @kabangukabangu2529
    @kabangukabangu2529 3 года назад

    The visual made it clearer 👏🏿

    • @WrathofMath
      @WrathofMath  3 года назад +1

      Glad to hear it, thanks for watching!

  • @vishnum3690
    @vishnum3690 4 года назад +4

    Thank You! Can you please do a video on the recurrence formulation of the Bell number(number of ways to partition a set)?

    • @WrathofMath
      @WrathofMath  4 года назад +2

      Thanks for watching, Vishnu! And great idea, I'll get right to work on that lesson! Thanks for the request!

    • @vishnum3690
      @vishnum3690 4 года назад

      Thank you so much!

  • @pavanajsridhar939
    @pavanajsridhar939 2 года назад

    damn!! the best explanation of partition I have ever encountered!! It was clear and to the point!

  • @ayang315
    @ayang315 2 года назад

    Excellent explanation! Thank you.

  • @ayeshaumairjameel4041
    @ayeshaumairjameel4041 Год назад

    Excellent explanation . . easy to understand. . . . . Thank u very much😇

    • @WrathofMath
      @WrathofMath  Год назад

      Glad to help, thanks for watching!

  • @ChesangRebeccamatila
    @ChesangRebeccamatila 2 месяца назад

    I finally understood after this video ❤

  • @QAQqianji
    @QAQqianji 2 месяца назад

    Thank u, that's amazing and intuitive!

  • @luka1696
    @luka1696 2 года назад

    Very nice explanation. Made it easy.

  • @sabinomuniz5542
    @sabinomuniz5542 3 года назад

    Explained it so simply. Much thanks!!

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, thanks for watching! A few related lessons if you're interested...
      Counting Partitions and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Recurrence Relation for Bell Numbers: ruclips.net/video/sPGudyLalmE/видео.html
      Recurrence proof: ruclips.net/video/abfCpVASfLM/видео.html

  • @rohitritthetend5501
    @rohitritthetend5501 Год назад

    Best explanation.....✨✨🤗

  • @kooroshkamjoo209
    @kooroshkamjoo209 3 месяца назад

    it's not the wrath of math, it's a velvet hug of cutie math
    wrath of math belongs to the school's teachers

  • @remilff7902
    @remilff7902 11 месяцев назад

    THANKS. I am French and in my course we study the link between the number of surjections of n on k and the number of partitions into k blocks of n. But the difference between a surjection and a partition was not explained in the course 💀. But thanks to your video I understand clearly that a partition is equivalent to arranging sets in a set so the order is not important (+ all other constraints obviously) while a surjection amounts to arranging sets in a list so the order is important!

  • @banelenyide9087
    @banelenyide9087 2 года назад

    clear and straight to the point

    • @WrathofMath
      @WrathofMath  2 года назад

      Glad it was clear, thanks for watching!

  • @sparrowp2251
    @sparrowp2251 10 месяцев назад

    this is just perfect ,loved it thank you

  • @pacsrighthand5923
    @pacsrighthand5923 4 года назад +1

    Thanks this is really helpful you're very good

    • @WrathofMath
      @WrathofMath  4 года назад

      So glad it helped! Thanks for watching and let me know if you have any video requests! If you're studying partitions, you may be interested in my lessons on Bell numbers! (just do a search for "Bell numbers wrath of math" and you should find 'em)

  • @shailendrarajput6053
    @shailendrarajput6053 4 года назад +1

    Great way of explanation.🇮🇳

    • @WrathofMath
      @WrathofMath  4 года назад

      Thank you! So glad it was clear!

  • @cosmicmelody4259
    @cosmicmelody4259 2 года назад

    Thank you soo much,, your way of explanation is soo smooth ❤❤

  • @alexandriagladys1201
    @alexandriagladys1201 3 года назад

    you're the best! this made it so easy to understand

    • @WrathofMath
      @WrathofMath  3 года назад

      So glad it helped! Thanks for watching and let me know if you ever have any questions!

  • @zazatjijombo174
    @zazatjijombo174 Год назад

    Straight to the point thank you sir ❤

  • @arnavchandrayan2349
    @arnavchandrayan2349 3 года назад

    Nicely described in short time

    • @WrathofMath
      @WrathofMath  3 года назад

      Thanks Arnav, glad it was helpful! I have several other lessons on partitions and Bell Numbers if you're interested. If you look up "partitions wrath of math" you should find them!

  • @Herunknownaccount1244
    @Herunknownaccount1244 4 года назад +1

    Thank you for the explanation

    • @WrathofMath
      @WrathofMath  4 года назад

      No problem, thanks for watching!

  • @dianeyeoman8046
    @dianeyeoman8046 2 года назад

    Clear and concise!

  • @MosaAhmad-sz4yt
    @MosaAhmad-sz4yt Год назад

    Fruitful explaining

  • @sristysingh001
    @sristysingh001 3 года назад

    Great explanation
    Just cleared my confusion

  • @leocheng9428
    @leocheng9428 2 года назад

    clear and clean af

  • @vysakhmusicspace9634
    @vysakhmusicspace9634 4 года назад +1

    Thanks a lot sir❤️....
    Awesome session...👍

    • @WrathofMath
      @WrathofMath  4 года назад

      You're very welcome, thank you for watching and let me know if you ever have any questions!

  • @sourabhkaushik7687
    @sourabhkaushik7687 2 года назад

    Best explained thank you so much for your effort

    • @WrathofMath
      @WrathofMath  2 года назад

      Glad it helped! Check out some of my related lessons for more on partitions...
      Counting Partitions and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Recurrence Relation for Bell Numbers: ruclips.net/video/sPGudyLalmE/видео.html
      Recurrence proof: ruclips.net/video/abfCpVASfLM/видео.html

  • @swagatikadas6664
    @swagatikadas6664 3 года назад

    Very useful....🙂
    Thank you very much...😃😄

    • @WrathofMath
      @WrathofMath  3 года назад

      You're very welcome, thanks for watching!

  • @WOLF91
    @WOLF91 4 года назад +1

    Appreciate this. Do you have a video on partial orders and composition?

  • @Alter_Singh
    @Alter_Singh Год назад

    Very good explanation

    • @WrathofMath
      @WrathofMath  Год назад

      Thank you, glad you found it clear!

  • @firasdjebbi6737
    @firasdjebbi6737 2 года назад

    thank you!! you made so easy

  • @swayenkumar2776
    @swayenkumar2776 3 года назад

    thank you.. great lecture... I am from bangladesh

  • @นวพลทองมาก
    @นวพลทองมาก 3 года назад

    Nice explanation.thank you,sir.👍🏻

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, thanks for watching!

  • @con_el_maestro3544
    @con_el_maestro3544 Год назад

    Thank you very much sir

  • @yashodharmasingh3889
    @yashodharmasingh3889 2 года назад +1

    Thank you sir

  • @_Maha1
    @_Maha1 Год назад

    This is usefull!!! Thank u so much

  • @Alchemist588
    @Alchemist588 Месяц назад

    Tysm❤🙌

  • @spacecommunityv.i.d.a2040
    @spacecommunityv.i.d.a2040 4 года назад

    Love this video keep it up 👍

  • @debabandanpattnaik3274
    @debabandanpattnaik3274 3 года назад

    Nice explanation

  • @akujobi620
    @akujobi620 3 года назад

    This was perfect, thanks

    • @WrathofMath
      @WrathofMath  3 года назад

      My pleasure, glad it helped and thanks for watching!

  • @ahsanulhaque4811
    @ahsanulhaque4811 3 года назад

    Immediately subscribed after seeing the channel Name. Such a cool Name :D

    • @WrathofMath
      @WrathofMath  3 года назад

      Haha, thank you! Wrath of Math is the name of a great hip hop album as well, and I love hip hop! If you’re in the mood for some, you may be interested in my latest math rap track: ruclips.net/video/29qzzNEmEOc/видео.html

  • @yamatanoorochi3149
    @yamatanoorochi3149 10 месяцев назад

    What cover of moon river is in your outro?

  • @miss_r801
    @miss_r801 2 года назад

    Thankyou sir💜

  • @Flux281
    @Flux281 3 года назад +1

    what if the set S has repeating elements , do write it twice in P or do i just follow the definition?

    • @mohdfaiz5977
      @mohdfaiz5977 3 года назад

      remember a set doesnt contain repeating elements.

  • @ЕрдаулетКаппар
    @ЕрдаулетКаппар Год назад

    Thank you!

  • @pookie_00089
    @pookie_00089 2 года назад

    Is there any formula to calculate how many partition can be done for any number

  • @apeximperator
    @apeximperator 3 года назад +1

    TYSM😁

    • @WrathofMath
      @WrathofMath  3 года назад +1

      You're welcome! Thank you for watching! I like how your emoji matches Naruto's face in your profile picture!

    • @apeximperator
      @apeximperator 3 года назад

      @@WrathofMath woahhhh, then you're my sensei 😃

    • @WrathofMath
      @WrathofMath  3 года назад +1

      Well, frogs and toads happen to be my favorite animals! I’ll be the Math Toad Sage!

    • @apeximperator
      @apeximperator 3 года назад

      @@WrathofMath ohhhhh, Jiraiya Sensei😎

  • @arjunarvind2178
    @arjunarvind2178 4 года назад

    well explained sir

  • @ski34able
    @ski34able 4 года назад +1

    Amazing!

  • @GradientSoln-En
    @GradientSoln-En 4 месяца назад +1

    Thanks

  • @evangelistgeorge18
    @evangelistgeorge18 2 года назад

    Is there any formula that helps us to know the number of partition a set should have? If yes what is it?

    • @WrathofMath
      @WrathofMath  2 года назад

      Thanks for watching and good question! There is, but it is a recursive formula. Check out my lessons on the Bell Numbers!
      Counting Partitions and Bell Numbers: ruclips.net/video/iJF2kPFGTUo/видео.html
      Recurrence Relation for Bell Numbers: ruclips.net/video/sPGudyLalmE/видео.html
      Recurrence proof: ruclips.net/video/abfCpVASfLM/видео.html

  • @taljune142010
    @taljune142010 Год назад

    Great! Thanks!

    • @WrathofMath
      @WrathofMath  Год назад

      Glad to help - thanks for watching!

  • @godfather-gh2vq
    @godfather-gh2vq 4 года назад

    Thanks😊

    • @WrathofMath
      @WrathofMath  4 года назад

      You're very welcome! 😊 Thanks for watching!

  • @ahmetkarakartal9563
    @ahmetkarakartal9563 3 года назад

    THANK YOU SOOOO MUCH

    • @WrathofMath
      @WrathofMath  3 года назад +1

      You're very welcome, thanks for watching!

    • @ahmetkarakartal9563
      @ahmetkarakartal9563 3 года назад

      @@WrathofMath I have a question about partitions. { {} , {1,2,3} } is a partition of S ? . In the book the answer is yes but it includes empty. I didnt get it. Thank you so much again.

    • @WrathofMath
      @WrathofMath  3 года назад +1

      Good question - I have never seen a definition of partition that allows for empty sets. Partitions must contain only nonempty subsets. If the book says { {} , {1,2,3} } is a partition, it is either a typo or a very nonstandard definition.

    • @ahmetkarakartal9563
      @ahmetkarakartal9563 3 года назад

      @@WrathofMath Okay, thanks again for helping to me

  • @christydevaraj8411
    @christydevaraj8411 3 года назад

    Any easy formula to find partition of large numbers

  • @Victual88
    @Victual88 5 месяцев назад

    Thanks!

  • @itsev6970
    @itsev6970 4 года назад

    Excellent

  • @sandeepsahanicodes
    @sandeepsahanicodes 4 года назад

    THANK YOU

    • @WrathofMath
      @WrathofMath  4 года назад

      You're welcome! Thank you for watching!

  • @winonaeliseragabautista8021
    @winonaeliseragabautista8021 4 года назад

    can i put six numbers in a subset? (like {{1,2,3,4,5,6}}
    thank you.

  • @aqsaameer3403
    @aqsaameer3403 3 года назад

    Great sir

  • @moon3252
    @moon3252 8 месяцев назад

    Thank u so much

  • @dariazhivaliukova819
    @dariazhivaliukova819 3 года назад

    studying in Germany, being russian, watching math explanation in english
    thanks

    • @WrathofMath
      @WrathofMath  3 года назад +1

      That's incredible! Thanks for watching, so glad to help!

  • @tejaswinibonam3170
    @tejaswinibonam3170 4 года назад

    In How many ways can we do partition of a set?
    Plz..reply sir

  • @AabhusanAryalOfficial
    @AabhusanAryalOfficial 3 года назад

    Thanks :)

    • @WrathofMath
      @WrathofMath  3 года назад +1

      You're welcome! :) Thanks for watching!

  • @taotechsolutions
    @taotechsolutions 2 года назад

    Yes
    Thanks

  • @ryoukboy1010
    @ryoukboy1010 Год назад

    6:09. Green elements...🤨😦

  • @nam1820
    @nam1820 3 года назад

    What is the formula for finding partition of a set

    • @WrathofMath
      @WrathofMath  3 года назад

      Thanks for watching, and do you mean a formula for counting the number of partitions of a set? Check out this sequence of 3 lessons, ending with a proof of a recurrence relation that can be used to calculate the number of partitions of a set (the number of partitions of a set with n elements is called a Bell number, B_n).
      ruclips.net/video/iJF2kPFGTUo/видео.html
      ruclips.net/video/sPGudyLalmE/видео.html
      ruclips.net/video/abfCpVASfLM/видео.html

  • @proviptk
    @proviptk 2 года назад

    2:06 I thought the third one contains 3...

  • @creative_galaxy490
    @creative_galaxy490 4 года назад

    plz upload the video for cross partition

  • @jeremyvernon8748
    @jeremyvernon8748 4 года назад +1

    Noooowwwww I get it. Thank you!

    • @WrathofMath
      @WrathofMath  4 года назад

      Glad it helped and thanks for watching!

  • @Yzyle
    @Yzyle 8 месяцев назад

    what if (1,3) (2), (1,3), is it still partition?

    • @time_lightsout_1186
      @time_lightsout_1186 8 месяцев назад

      No, think of it like you can take every value from the set and separate them into different sets even together. But once you add number outside your set space like, let's say you add 4, it's no longer a partition of the set. And if we add extra values into the set like you did here, it's no longer a partition. You would need {1,1,2,3,3} as your set if you wanted that to be a partiton. Im assuming you are going off the set {1,2,3}, which would make what you have not a partions as it adds the extra values into the mix. Hoefully, this helps some.

  • @con_el_maestro3544
    @con_el_maestro3544 Год назад

    Love how you gave up on drawing curly brackets correctly 😂

  • @aliensamv3997
    @aliensamv3997 2 года назад

    1:15 if we seperating S ... man now you are harassing maths

  • @艾仔-f6z
    @艾仔-f6z Год назад

    Awesome!