Find a function whose integral between 2 different bounds is the same.

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 5

  • @hrishinaik281
    @hrishinaik281 4 месяца назад +4

    every odd function would also satisfy it right ?
    integral in a symmetric interval of a odd function is 0

    • @Archimedes_Notes
      @Archimedes_Notes  4 месяца назад

      @@hrishinaik281 You will have to make the bounds of the integral the same by defining f as iI said in the video and in that case an odd function will work .You will have the 0 value.

    • @PedroDuqueBR
      @PedroDuqueBR 4 месяца назад +1

      You’re right. One can even loosen that assertion. In fact, any function f such that int_(-3)^(-1) f(x)dx = -int_(1)^(3) f(x)dx will satisfy the equation.

  • @ffc1a28c7
    @ffc1a28c7 4 месяца назад +1

    integral of f(3x) from -1 to 1 vs integral of f(x) from -3 to 3 is the same.

  • @mitanshmishra5598
    @mitanshmishra5598 4 месяца назад

    WOW