Generative Syntax 1.3: Constituent Recursion

Поделиться
HTML-код
  • Опубликовано: 1 фев 2025

Комментарии • 23

  • @thaisvidal3982
    @thaisvidal3982 7 лет назад +9

    Thank you so much for your videos! I love being in contact with Syntax through such an intelligent professional!

  • @weizhang5956
    @weizhang5956 7 лет назад +1

    Best video series I've ever seen on Utube

  • @mattbarros8150
    @mattbarros8150 2 года назад

    Thanks for this Channel Caroline, I really love the animations and data floating to your left!

  • @ale-motta
    @ale-motta 8 лет назад +3

    An engaging and engrossing series of videos about Syntax. The concepts are really clear!

  • @Rystopian
    @Rystopian Год назад +1

    Thank you for your great and simple explanation, my teacher COULD NEVER do that.

  • @zulkiflijamil4033
    @zulkiflijamil4033 4 года назад

    Good day. Thank you Professor Heycock. This online lecture is superb. Cheers for sharing.

  • @theohlong307
    @theohlong307 4 года назад

    best recursion example i have seen so far, thank you!

  • @KumarMukeshz
    @KumarMukeshz 5 лет назад +1

    Mam,
    You are doing a great job.

  • @gabrielgallinatesoliz152
    @gabrielgallinatesoliz152 9 лет назад

    Thanks for uploading these videos. You are the best.

  • @nnnnvvvvllll
    @nnnnvvvvllll 9 лет назад +1

    Thank you so much, now I can understand recursion

  • @nezhasspace4687
    @nezhasspace4687 3 года назад

    Thank you professor

  • @josh_sqlla
    @josh_sqlla 5 лет назад

    Beautiful explanation

  • @larysamak9704
    @larysamak9704 3 года назад

    Just brilliant!

  • @Merajmohdkhan
    @Merajmohdkhan 8 лет назад

    awesome illustration...thanks for video

  • @انيقهبشخصيتي-ن6خ
    @انيقهبشخصيتي-ن6خ 6 лет назад

    Thank you so much. easy and clear explanation.

  • @salimasaly4094
    @salimasaly4094 9 лет назад

    Although conceived differently "recursiveness" and "paradigmatic pattern of De Saussure", both processes entail "a kind of generativism": allow for creating an infinite number of sentences, from a finite set of items....What's your take on that?

  • @navegandomivandestadt34
    @navegandomivandestadt34 4 года назад

    Brilliant!

  • @freedom21112
    @freedom21112 7 лет назад

    Thanks so much, it's really helpful

  • @jamalan7417
    @jamalan7417 3 года назад

    What an age to be breathing in !

  • @khaoulitamorena9908
    @khaoulitamorena9908 6 лет назад

    thank uuu

  • @edgarnmarschalek5113
    @edgarnmarschalek5113 7 лет назад

    subtitles are out of sync :(

  • @CheCheDaWaff
    @CheCheDaWaff 6 лет назад

    Slight correction: recursion doesn't allow you to build infinite symbol strings, it only lets you build arbitrarily large finite strings.