First shifting theorem: Laplace transforms

Поделиться
HTML-код
  • Опубликовано: 12 ноя 2024

Комментарии • 46

  • @Benlarsendk
    @Benlarsendk 10 лет назад +3

    Just lovely.
    I can't stop being so amazed about how easy it is to spread information now a days. I can sit here in Denmark, with a hot cup of coffee, crying my eyes out over Laplace- and fourier-transforms due to an upcomming exam, and then some BRILLIANT australian saves the day. God bless the internet and Dr. Chris - thank you so very much.

  • @sivonparansun
    @sivonparansun 9 лет назад +3

    Saved me hours of frustration trying to dissect the textbook. Thank you Dr.

  • @valiantnyembwe
    @valiantnyembwe 9 лет назад +1

    wooow, this is just amazing, been struggling for a while now , but finally i got it. a big thank from Norway Dr.

  • @justathoughtok2878
    @justathoughtok2878 7 лет назад

    Wow, these videos might just be some of the best teaching material I've been lucky enough to witness. Keep it up!

  • @akanksharakshit523
    @akanksharakshit523 6 лет назад

    Your a life saver ...That just saved me hours of trying to figure it out with my text book ..Thank you

  • @musaj90
    @musaj90 11 лет назад

    you are so organised i felt like it is a mold and you are injecting the information into it, i have bee straggling for apx 6 Hrs and i could not understand , but with one hour with i got it .. thank you thank you thank you

  • @DrChrisTisdell
    @DrChrisTisdell  12 лет назад +3

    Thank you for the great feedback!

  • @erickim3710
    @erickim3710 10 лет назад +17

    Isn't this professor totally awesome?

    • @stianl575
      @stianl575 10 лет назад

      For having bad notation, being stressed out? Not really ,no.

    • @DrChrisTisdell
      @DrChrisTisdell  10 лет назад +6

      ***** Bad notation? Stressed out? Please explain.

    • @sjabaranks
      @sjabaranks 9 лет назад +14

      Dr Chris Tisdell some people are born negative keep up the good work man.

  • @jayasenan
    @jayasenan 9 лет назад

    Excellent lectures.Dr.Chris made it very easy

  • @Sweetlewskateshoe
    @Sweetlewskateshoe 8 лет назад

    Cheers Chris, really appreciate these videos don't know what I'd have done!

  • @BentHestad
    @BentHestad 4 года назад

    Thank you Sir for this and other great series of yours in the field of mathematics! Greetings from Trondheim, Norway!

  • @nicholasrowe771
    @nicholasrowe771 10 лет назад +3

    respect from Jamaica DR

  • @DrChrisTisdell
    @DrChrisTisdell  12 лет назад +1

    Thanks for the great feedback.

  • @barnabyranger2990
    @barnabyranger2990 11 лет назад

    A big thank you from Canada

  • @vajahaathhussain
    @vajahaathhussain 11 лет назад

    Thank you so much sir....ur lecture helped me so much fr my math.......

  • @The1234567890ashish
    @The1234567890ashish 12 лет назад +1

    Thank you so much sir...this thing really really helped...!

  • @manbakor3776
    @manbakor3776 8 лет назад

    thanks so much Dr. Chris

  • @امطارالسماء-ل6ض
    @امطارالسماء-ل6ض 7 лет назад

    Dr may God bless you .

  • @CrispyCyclicCenk
    @CrispyCyclicCenk 12 лет назад

    that is just "perfect" , thanks very much

  • @DrChrisTisdell
    @DrChrisTisdell  12 лет назад

    You are welcome!

  • @نزارمحمديعقوب-ظ6ف
    @نزارمحمديعقوب-ظ6ف 3 года назад

    hi Dr : can we solve laplace equation by lablace transformation ? thanks

  • @prasanjitdash439
    @prasanjitdash439 7 лет назад

    thanks Buddy it helps me a lot

  • @surekhaalumur628
    @surekhaalumur628 4 года назад

    Respect from India

  • @ntazakhumalo932
    @ntazakhumalo932 10 лет назад +1

    big thank u from south africa,that was awesome

  • @e_squared604
    @e_squared604 7 лет назад

    Hi Chris,
    at 3:40 at the bottom of the page in the proof of L(e^-at g(t)) = G(s + a), I don't understand how you get from the 2nd last and last bits - the way I do it gives me G((s + a)^-1)
    Many thanks
    Euan

  • @canvent
    @canvent 12 лет назад

    THANK YOU!!!! TY! TY! TY! You are awesome!

  • @DrChrisTisdell
    @DrChrisTisdell  12 лет назад

    It is my pleasure!

  • @chirmathe9423
    @chirmathe9423 11 лет назад

    thx you very big knowledge. thailand

  • @schertt
    @schertt 9 лет назад +2

    Technically speaking in your second example, a is equal to 1, not negative 1; the negative sign comes with the e^ -at. If a was actually equal to -1 then e^-at = e^ - (-1)t = e^t and the original f(t) would be (t+1)^2*e^-t.
    Seemingly trivial perhaps but actually important, especially when the second shifting theorem doesn't have that sign change

  • @Barsanawale178
    @Barsanawale178 7 лет назад

    sir one more question (t+1) ka whole square e power t ka first shifting property

  • @sjabaranks
    @sjabaranks 9 лет назад

    What it is within a function i.e sin(te^(-2t))

  • @mtahir9181
    @mtahir9181 4 года назад

    Thank u

  • @karimfaizy766
    @karimfaizy766 5 лет назад

    Sir u hve not written 2! factorial in calc. Remainig procedure is awesome.

  • @KrishnaDN
    @KrishnaDN 9 лет назад

    thanks:)

  • @DeepakMahto
    @DeepakMahto 11 лет назад

    thanks a lottttt sir :-)

  • @classtobeproud
    @classtobeproud 9 лет назад

    could you please solve L[t square sinat] would be really, helpful thanks.

    • @vipuljoshi2662
      @vipuljoshi2662 9 лет назад

      +Hamza Kirax
      L{sinat} = a/(s^2+a^2)
      and L{t^2}=2!/s^(2+1)
      hence by first shifting......
      L{t^2.sinat}= 2a/(s^2+a^2)^3

    • @classtobeproud
      @classtobeproud 8 лет назад

      Ohh thank you sirr :)

  • @Choza
    @Choza 11 лет назад

    4:18 example

  • @parkerflop
    @parkerflop 9 лет назад +1

    Allah bless you a million times over....so nice...the one dislike was possibly error. Statistically speaking a dislike is bound to happen. Hehe see what I did there.

  • @DrChrisTisdell
    @DrChrisTisdell  12 лет назад

    It's my pleasure!

  • @Barsanawale178
    @Barsanawale178 7 лет назад

    sir one more question (t+1) ka whole square e power t ka first shifting property