The Plotting of Beautiful Curves (Euler Spirals and Sierpiński Triangles) - Numberphile

Поделиться
HTML-код
  • Опубликовано: 9 янв 2025

Комментарии • 327

  • @numberphile
    @numberphile  2 года назад +44

    Part 2 (featuring Pi) is here: ruclips.net/video/tkC1HHuuk7c/видео.html

    • @user-dy9tf1ch1n
      @user-dy9tf1ch1n 2 года назад +1

      He's boring

    • @glg1969
      @glg1969 2 года назад

      Do you have a link to the Mathematica code for the turtle function, so I can show my son?

  • @mrphlip
    @mrphlip 2 года назад +1123

    The most impressive part of this whole video is taking the paper off the plotter mid-print, showing it off, and then putting it back on the plotter and being able to continue the print with everything still lined up properly...

    • @PhilBoswell
      @PhilBoswell 2 года назад +67

      I'm guessing there's something analogous to "drawing pin holes" so that he can just attach the paper in the same fashion as before: I would be croggled if it actually uses old tech like drawing pins ;-)

    • @williamchamberlain2263
      @williamchamberlain2263 2 года назад +32

      @@PhilBoswell doesn't it just use the _POWER OF HIS MIND?_

    • @MichaelOfRohan
      @MichaelOfRohan 2 года назад +8

      Im sure the paper was bucked against jigs on a couple adjacent sides

    • @MichaelOfRohan
      @MichaelOfRohan 2 года назад +4

      I still love you though

    • @unvergebeneid
      @unvergebeneid 2 года назад +2

      haha, ikr!

  • @alexelliott9733
    @alexelliott9733 2 года назад +14

    1:41 - "a can of hyperbolic paraboloids" - that brought me back to my calculus class where my professor kept referring to that shape as a pringle

  • @TomRocksMaths
    @TomRocksMaths 2 года назад +205

    I could watch that machine draw all day… sooooooo satisfying

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 года назад +7

      Hey, you're the Navier-Stokes enthusiast!
      Seriously though, Tom, when's your next turn to guest host a Numberphile video?

    • @maestroeragon
      @maestroeragon 2 года назад +3

      Imagine if it could do tattoos! If you have any space left, I'm sure you'd have plenty of ideas for the machine haha

  • @DqwertyC
    @DqwertyC 2 года назад +53

    This is kind of amusing. I make Minecraft datapacks, usually based on fun math concepts. One of my main inspirations is this channel, and sometimes I'll try to recreate the processes in Numberphile videos in Minecraft. But this time, I posted a datapack about a topic just before you! My latest video was the Sierpinski Arrowhead Curve, which was generated with the same replacement method, and I'm working on a larger video about Lindenmayer (replacement) systems.

  • @talideon
    @talideon 2 года назад +358

    For those without Mathematica, Python has a built-in turtle graphics module.

    • @BrianBlock
      @BrianBlock 2 года назад +13

      Yeah, you can basically find a turtle library/function for any language these days, this is a classic :)

    • @DeclanMBrennan
      @DeclanMBrennan 2 года назад +20

      @@BrianBlock Thanks Seymour Papert. You gave generations of kids some serious fun while they were learning through osmosis with the Logo Turtle and Language.

    • @flyingphysics9664
      @flyingphysics9664 2 года назад +5

      Mathematica comes free on the Raspberry Pi...

    • @odraz0101
      @odraz0101 2 года назад +2

      @@flyingphysics9664 is it fully functional Mathematica or is there limitations? Does it have access to knowledge base?

    • @gregwochlik9233
      @gregwochlik9233 2 года назад +2

      I used that Python turtle module myself. I got it to draw the Sierpiński triangle myself. I picked up a recursive code on line.

  • @grumpyrocker
    @grumpyrocker 2 года назад +87

    I remember programming the Turtle at school in the 1980s. We had a physical Turtle robot and we could get it to draw big images on the large sheets of paper on the floor.

    • @Baconlessness
      @Baconlessness 2 года назад +2

      We had something similar that didn't draw anything. It looked like a small roomba that you could program with forwards, lefts and rights

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 года назад +3

      We had something similar to "Turtle" on our Apple II-Es when I took a basic/introductory computer skills workshop for a one-marking period elective back in eighth grade back in 1985/'86 where we would input some simple geometric instructions, and the cursor ("turtle") would draw triangles, squares, pentagons, hexagons, stars, etc.

    • @vigilantcosmicpenguin8721
      @vigilantcosmicpenguin8721 2 года назад

      Dang, guess I missed out on the cool Turtle lessons as a student in the 2010s. We just programmed Turtle using the Java Virtual Machine.

    • @tfofurn
      @tfofurn 2 года назад

      I participated in a summer camp with the turtle robot. The instructor laid a course out on the floor and we each programmed our solution. One person thought the movement units were feet instead of inches, so on their attempt, the turtle barely moved. The teacher announced that the solution looked correct other than the scaling.

  • @rhoddryice5412
    @rhoddryice5412 2 года назад +57

    Videos with Henderson are always great. Looking forward to part II.

  • @RichardHolmesSyr
    @RichardHolmesSyr 2 года назад +23

    Takes me back to the early 1970s when I was an undergraduate, tying up the (admittedly not much used) Hewlett-Packard XY plotter on a timesharing DECSystem 10 drawing dragon curves...

    • @JimC
      @JimC 2 года назад +2

      I plotted dragon curves around the same time! On the plotter we used, you had to issue each drawing command twice to get perfect corners. That was because the pen decelerated at the very end of a command and that was easier than coming to an abrupt stop. I used just one command for each segment of dragon curves because perfect corners made it look like an incomplete grid, not a curve.
      I also drew a 31-gon and all its diagonals.

  • @Rubrickety
    @Rubrickety 2 года назад +141

    Finally a Numberphile video with a plot. 😉

    • @lonestarr1490
      @lonestarr1490 2 года назад +17

      ba dum tss

    • @Superphilipp
      @Superphilipp 2 года назад +5

      I definitely watch for the plot

    • @_rlb
      @_rlb 2 года назад +2

      You've got 42 likes which is the best number of likes.

    • @deltalima6703
      @deltalima6703 2 года назад

      Video is boring but the peanut gallery is on point! :))

    • @aurelia8028
      @aurelia8028 2 года назад

      lol

  • @chinobambino5252
    @chinobambino5252 2 года назад +115

    Amazing at 7:47 - very similar to the way DNA packs itself when condensing "coils of coils". Even the little ball-ish nodes look like the histone proteins that it coils around.

    • @Mathaveld
      @Mathaveld 2 года назад +10

      Like a fractal, nature loves fractals :)

    • @matdex
      @matdex 2 года назад +1

      I thought the same! Wonder if there's a connection.

    • @carvoloco4229
      @carvoloco4229 2 года назад

      Yeah! It brought the same idea to my mind!

    • @chinobambino5252
      @chinobambino5252 2 года назад +4

      @@matdex connection is probably just an optimal packing formation - every (human) cell has around 6 feet of DNA that it needs to store inside a tiny nucleus. Fun fact: with ~10 trillion cells in your body, thats 10 billion miles of DNA you're carrying right now.

    • @xenorac
      @xenorac 2 года назад

      @@chinobambino5252 No wonder I weigh so much...

  • @SquirrelASMR
    @SquirrelASMR 2 года назад +1

    I really like this guy's math visualization animations

  • @japhethkallombo3820
    @japhethkallombo3820 2 года назад

    I'm a biochemist and one of the Euler spirals you showed at 8:23 looks similar to the super packaging of genomic DNA in eukaryotic cells

  • @rosiefay7283
    @rosiefay7283 2 года назад +28

    Those spirals of spirals are beautiful! They remind me of how the continued fraction expantion of some real number x can be used to give more and more accurate rational approximations to x.

  • @victorfromheart
    @victorfromheart 2 года назад +4

    Honestly, this kind of video is the core reason I like this channel

  • @cedrdar
    @cedrdar 4 месяца назад

    I’ve seen Sierpinski triangles many times but this was the first time I’ve realized the reflection line and the self-similar patterns leading up to it. Fascinating!

  • @DeclanMBrennan
    @DeclanMBrennan 2 года назад +24

    Next step up: for the turtle: an automated combine harvester let loose in a very large corn field to produce a Sierpinski triangle - that would certainly upstage the usual crop circle. :-)

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown 2 года назад

      I imagine that such a field would have to be super flat as I'd think any irregularities in the topography would likely throw off the combine-plotter

    • @DeclanMBrennan
      @DeclanMBrennan 2 года назад +2

      @@shruggzdastr8-facedclown Some of the modern combines have impressive technology for very accurately locating themselves in real time. Makes for a very expensive turtle though. :-)

    • @DickHolman
      @DickHolman 2 года назад

      @@shruggzdastr8-facedclown
      As long as the slopes are within the machines' physical limits, no problem.
      GPS, especially with local transponders & on-board physical sensors in the control-loop, are centimetre-accurate. And, you can remote-input driving instruction into the really expensive ones. :)
      Can anyone hack a combine?

    • @ideallyyours
      @ideallyyours 2 года назад +1

      I would recommend using a Hilbert Curve ruleset instead, since fields tend to be made up of parallel rows and more closely resemble a square (or rectangle, which can be thought of as a series of (overlapping) squares.)

  • @zionklinger2264
    @zionklinger2264 2 года назад +7

    Love it when I see my area of research in a numberphile video! Lindenmeyer systems which are what the guest used to generate a sierpinski triangle! Personally I'm using them to generate 3D trees!!

  • @MysliusLT
    @MysliusLT 2 года назад +2

    Matt was amazing in this video. The articulation, the body language, the work. More videos please.😊

  • @awandererfromys1680
    @awandererfromys1680 2 года назад +12

    Man, I remember Turtle from computer class waaay back in 1989. Then last year I discovered Python comes with a simple Turtle implementation. So now I guess I only have to build a plotter lol!
    Really cool this program is still around.

  • @rujon288
    @rujon288 2 года назад +4

    Watching these videos is so relaxing

  • @davidhutchins8144
    @davidhutchins8144 2 года назад +3

    I absolutely love this and all of Matt's videos. Cheers!

  • @didiermuller5797
    @didiermuller5797 2 года назад +2

    Thank you Numberphile! After seeing this video I made a version of it on Scratch. Pretty fun to show how it works to my little student and how math can be beautiful without being useful.

  • @Brontalo
    @Brontalo 2 года назад +54

    Would be cool to expand on lindenmayer systems a lot more
    and show how they can mimic treelike fractals.
    An L-system i found is
    A -> - C++A
    B -> B - - C+
    C -> D
    D -> AB
    you start with AB and + & - is a 45° turn.

    • @ideallyyours
      @ideallyyours 2 года назад

      C -> D seems like a redundant step, you could replace it with C -> AB

    • @DaedalusYoung
      @DaedalusYoung 2 года назад +5

      @@ideallyyours Try it, see if there's a difference skipping the D.

    • @RibusPQR
      @RibusPQR 2 года назад

      Don't skip D-day.

    • @Brontalo
      @Brontalo 2 года назад

      I think in the limit they look the same with or without the D.
      But with D it's much easier to draw by hand on squared paper. On that the diagonal lines are longer by sqrt 2, but that doesn't change the original scaling much.

    • @ideallyyours
      @ideallyyours 2 года назад +1

      @@Brontalo Maybe you found an elegant way to "time" when rules are applied by adding a holding step C -> D, so that different instances of C/D are substituted which could give a more organic and less layered look.

  • @same9643
    @same9643 2 года назад +14

    Matt Henderson Numberphiles are definitely my new favourite Numberphiles

    • @numberphile
      @numberphile  2 года назад +10

      You'll love the second part of this one!

    • @Zveebo
      @Zveebo 2 года назад

      I agree - great topics and very interesting. Plus his accent is very relaxing to listen to ☺️

    • @Челленджер-х5ж
      @Челленджер-х5ж 2 года назад

      @@numberphile second part?) That's awesome!

  • @CHIEF_420
    @CHIEF_420 2 года назад

    Thanks!

  • @po-chiachen2990
    @po-chiachen2990 2 года назад +1

    A neat thing about these plots for rational numbers is that your turtle will either run around in circles or run off forever in a set direction, depending on the fraction you give and the base. It can never do things like spiral outwards or walk pseudo randomly from a rational number input ; the exact fraction simply affects how much dawdling and pattern making it does along the way.

  • @misteragb7558
    @misteragb7558 2 года назад +2

    To me, this is pure art and I really mean that, especially what he shows in part 2

  • @danielstephenson7558
    @danielstephenson7558 2 года назад +1

    One of the most satisfying things I've ever printed is the Sierpinski Pyramid. Never had to take it's 'pen' off the paper the entire way up the object.

  • @veggiet2009
    @veggiet2009 2 года назад +1

    I love how in this video everything is regular and orderly, even when it seems chaotic it leads to something orderly. And the next video is just straight random chaos.

  • @SoleaGalilei
    @SoleaGalilei 2 года назад +5

    The spirals of spirals reminded me of how if you zoom out far enough in space, you see that galaxies are grouped into clusters and superclusters of galaxies.

  • @laurilehtiaho9618
    @laurilehtiaho9618 2 года назад +2

    When I was in high school, I used to waste my French classes plotting the Dragon Curve on a paper like this. I would have pages of L's and R's marking left and right turns.
    Turns out I am both retaking French classes, and bumping to fractal drawings again - almost 20 years later. Now I am focusing a bit more on my French, though.

  • @jackwisniewski3859
    @jackwisniewski3859 2 года назад +14

    turtle graphics is my favorite python module, i love it a lot, its so very simple, powerful and fun i even have a yt video i made using it that im actually pretty proud of

  • @QuantumHistorian
    @QuantumHistorian 2 года назад +32

    Ok, but why does the substitution trick work? I can kind of see that it replicates the nested symmetry of the shape, but it would be really nice to see a proof of it. Numberphile has recently been stopping _just_ short of the proper maths itself, which is a bit of a shame.

    • @ideallyyours
      @ideallyyours 2 года назад +4

      It's not a trick so much as it's a rule. It's an example of Lindenmeyer systems (L-systems) that use rules like these to generate structures with some self-similarity or of a recursive nature. In addition to Forward and Turn (+/-) rules, there are also Scale (multiply/divide length), Scale (multiply/divide angle), Push/Pop (for generating branches), Trim (ends a branch), and in 3D you also have additional rules to deal with line thickness.
      The rules in this example are specifically designed to create self-similarity, which is not a guaranteed result of any combination of L-system rules.

  • @Snowflake_tv
    @Snowflake_tv 2 года назад +3

    I have been waiting for your new video! Thank you so much.

    • @numberphile
      @numberphile  2 года назад +7

      Part 2 of this one will knock your mathematical socks off!

    • @Snowflake_tv
      @Snowflake_tv 2 года назад +1

      @@numberphile 🧦👟 kick off! Yay!

  • @gh0stdog89
    @gh0stdog89 2 года назад +1

    The turtle gave me a great sense of nostalgia

  • @kees-janhermans910
    @kees-janhermans910 2 года назад +1

    If you follow the output of an input of the Zeta function, especially for the higher imaginary parts of the input, and especially between 0-1 for the real part, you get a lot of Euler spirals as well.

  • @WAMTAT
    @WAMTAT 2 года назад +5

    beautiful mathematics

  • @juansalvemini9270
    @juansalvemini9270 2 года назад +8

    Really appreciate when you don´t just show the pretty picture, but take the time to build up to it from the basic rules. All that complexity from two simple statements!

  • @davidgillies620
    @davidgillies620 2 года назад +2

    It's amazing what you can do with recursive formal grammars. Douglas Hofstadter goes into great detail in this vein in _Gödel, Escher, Bach_ .

  • @effingineffable685
    @effingineffable685 2 года назад +5

    Yay pretty maths drawings!

  • @PushyPawn
    @PushyPawn 2 года назад +2

    If he'd made the turtle a rabbit, that printer would have been much faster.

  • @HorvathDenis
    @HorvathDenis 2 года назад

    It inspired me in many ways. Thank you very much for sharing this video.

  • @MttGaming904
    @MttGaming904 5 месяцев назад +1

    im gonna show you some interensting curves to draw
    Me: ill draw ur curves

  • @user255
    @user255 2 года назад +2

    Please post the spirals source code!
    5:08 I want to see animation, where theta is increased very slowly (n being constant).

  • @bloomp7999
    @bloomp7999 2 года назад +1

    The turtle pattern reproducing itself in high iterations is amazing
    I Wonder what it looks like in billions of iterations

  • @Philip_J
    @Philip_J 2 года назад +12

    Don't think I've been this early to a video before.

  • @n20games52
    @n20games52 2 года назад

    Very fun to watch the machine work and the patterns to emerge.

  • @stephengraves9370
    @stephengraves9370 2 года назад +1

    My favorite part of this video is the Pilot pen that the machine draws with

  • @johnchessant3012
    @johnchessant3012 2 года назад +2

    Love this guy! Also I want a whole video of just that machine

    • @zafishguy5166
      @zafishguy5166 2 года назад +1

      I need this too. I also want the exact program he used so I can play around with it.

  • @judychurley6623
    @judychurley6623 2 года назад +1

    The British artist Harold Cohen in the 70s had produced "Aaron" an expert system that produced important exhibitions (at the Tate Modern and elsewhere) producing large-scale artworks using a 'turtle' - but did not use pre-determined forms. Really interesting.

  • @topilinkala1594
    @topilinkala1594 2 года назад

    I was in a course where we were studying computer programing and the system had turtle graphics package. Our mid term test was to program a clock that showed hours, minutes & seconds. I was the only one who programmed an analog clock. To get the hands moving I drew the first in on (B&W displays that time & age) and then off moved the angle and drew them on etc. Nice excercise but the teacher was not excited as the graphics were supposed to be the next part of the course.

  • @stefanf922
    @stefanf922 2 года назад +4

    Would be cool to see a dragon curve made from Euler spirals.

  • @mebamme
    @mebamme 2 года назад +8

    After a past video that called it "yooler spiral", this is the long-awaited redemption video.

  • @AppleoTexza
    @AppleoTexza 2 года назад +3

    It is not a case of chaos....if we repeat it enough times and zoom out enough we can see that it essentially will be the Euler spiral nested on itself. we need theta to be an irrational number for a chaotic patterns with different degrees of chaos maximum being with the golden ratio i think

  • @hepiik.8822
    @hepiik.8822 2 года назад

    I appreciate that you wrote Sierpiński correctly with ń, it isn't much nor a big thing, but it warms me a bit (im used too see polish surnames without polish letters)
    And overall, cool video!

  • @kudosdc
    @kudosdc 2 года назад

    More Matt please

  • @SquirrelASMR
    @SquirrelASMR 2 года назад +1

    I wanna see these run forever

  • @drenzine
    @drenzine 2 года назад +3

    Remembered something like this years ago, i think it was the square squigle fractal vid.

  • @KurtSchwind
    @KurtSchwind 2 года назад +1

    @11:32 "It's within the rules of Numberphile". Then again, so is the Parker's Square.😀

  • @jareknowak8712
    @jareknowak8712 2 года назад

    I remember me programming the Turtle in the 1997 in the beginning of high school in Poland.
    Quarter of century ago.
    It was the first and the last time i had something in common with programming.
    I perfectly remember each and every command, just like it was yesterday, it was fascinating.

  • @shruggzdastr8-facedclown
    @shruggzdastr8-facedclown 2 года назад +1

    That Euler spiral done to 1,000,000 iterations looks reminiscent of the dragon curve to me

  • @goodboi650
    @goodboi650 2 года назад +3

    I knew all those repressed LOGO memories would come in handy someday

  • @abox5184
    @abox5184 2 года назад +1

    Put that in an art gallery and it'll be better than most of the stuff there

  • @SaveSoilSaveSoil
    @SaveSoilSaveSoil 2 года назад +2

    Love the spiral of spirals!!! For Sierpinski, what happens when you do other angle pairs except +/- pi/3?

  • @MutantMonke
    @MutantMonke 2 года назад

    I remember learning about logo in 3rd grade. Drawing stuff was so good and fun as hell.

  • @_modiX
    @_modiX 2 года назад +3

    6:05 1.0456 is beautiful

  • @telotawa
    @telotawa 2 года назад +12

    oh hey! i remember doing stuff like this in Scratch lol

  • @任柳杰
    @任柳杰 2 года назад

    Love this cute thing ! You may be interested to try the angle list [1:0.99:100000] and Boom, a symmetric and beautiful pattern !

  • @antonmiserez934
    @antonmiserez934 2 года назад +3

    Did he just call Pringles hyperbolic paraboloids at 1:42? I'm gonna use that...

  • @vgoj
    @vgoj 2 года назад +1

    Brady, do you still sell the brown papers on ebay ?

  • @benwilletts8250
    @benwilletts8250 2 года назад

    Thanks for the upload. Very interesting indeed.

  • @wyboo2019
    @wyboo2019 9 месяцев назад

    im really curious about how you could derive the continuous version of the euler spiral from this discrete version.
    for example, turning 1 degree every 1 unit moved, we could find some recurrence relation (difference equation hopefully?) describing this, and then look at how that relation changes for turning 0.5 degrees every 0.5 units moved, turning 0.25 degrees every 0.25 units moved. i may do this later

  • @dedwarmo
    @dedwarmo 2 года назад +2

    Has Part 2 been posted yet?

  • @abelnyamori
    @abelnyamori 2 года назад

    Please post the full video of the machine drawing the curve somewhere. That was amazing

  • @heaslyben
    @heaslyben 2 года назад

    11:20 -- chair printed by Henry Segermam?

  • @PhilBoswell
    @PhilBoswell 2 года назад +3

    I want a pen plotter that doesn't cost an arm or a leg, is that even possible nowadays? We used to have an HP plotter (I want to say something like 7475?) but I don't know where that went and I'll bet USB won't touch it :-(

  • @Frownlandia
    @Frownlandia 2 года назад +1

    Is there a way to construct a fractal Euler-spiral-of-Euler-spirals and derive a theta value from that?

  • @05degrees
    @05degrees 2 года назад

    The spirals of higher order were a surprise! Though not too strange in retrospect.

  • @MichaelOfRohan
    @MichaelOfRohan 2 года назад

    I love this channel

  • @UncleKennysPlace
    @UncleKennysPlace 2 года назад +1

    This reminds me of writing HPGL scripts back in the day, to run my serial plotter.

  • @Mikopidayooo
    @Mikopidayooo 2 года назад +1

    Not first but still glad to have gotten a notification!

  • @juanluisclaure6485
    @juanluisclaure6485 2 года назад

    Gracias por tanto. Saludos from Bo

  • @tomoki-v6o
    @tomoki-v6o 2 года назад +3

    euler spiral used in transportation engineer .like highway and road design

  • @minkuspower
    @minkuspower 2 года назад

    man i love Turtle! so great to see it used like this :D

  • @talideon
    @talideon 2 года назад

    Another fun thing about the Sierpinski gasket is that it's related to the exclusive-OR operation.

  • @jamielondon6436
    @jamielondon6436 2 года назад

    "[…] from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved."

  • @supergsx
    @supergsx 2 года назад +1

    These Euler spirals appear in the partial sums of the Riemann Zeta Function.

  • @SoSo-li6dn
    @SoSo-li6dn 2 года назад

    If anyone is wondering, the original is called an axidraw - sold by EvilMadScientist, originally designed by Lesley Wilson. I have one and I am still paying for it !

  • @Robinson8491
    @Robinson8491 2 года назад

    What would you need algorithmically to get the Bernouilli solution to the brachystochrone curve? It would be possible to draw with this robotpen, and thus there should be a program. I need this in my research
    Edit: preferably based on the transcendental number e so the curvature gradient equals the value on the vertical axis

  • @minkuspower
    @minkuspower 2 года назад

    9:41 but how do you code that in python?

  • @coreyburton8
    @coreyburton8 2 года назад

    thanks so much that was great

  • @AleksyGrabovski
    @AleksyGrabovski 2 года назад

    Basically, Numberphile has become just a huge Python promotion channel

  • @mrdrbernd
    @mrdrbernd 2 года назад

    He seems to be using an AxiDraw (or clone). You can do these graphs in huge very easily with a polargraph (or makelangelo). Very simple to build and 1 m x 1 m size is easily achievable and very cheap to build.
    Had plenty of hours of fun so far with it.

  • @chrisakaschulbus4903
    @chrisakaschulbus4903 2 года назад

    Good ol' turtles... i know the from a minecraft mod where you can program in lua :D
    They can break and place blocks, move around and turn. It's a lot of fun.

  • @MariusSc
    @MariusSc 2 года назад

    That’s cool! Going to try this out myself :)

  • @ambrosethomson750
    @ambrosethomson750 2 года назад

    "A can of hyperbolic parabaloids." Amazing

  • @MelindaGreen
    @MelindaGreen 2 года назад

    The big triangles don't contain exact copies of the smaller ones. They are slightly different in the corners where they attach to other copies.

  • @vsm1456
    @vsm1456 2 года назад

    6:05 This figure for 1.0456 looks like a pattern. I wonder where does it come from? In the form of fraction that number would be 1307/1250, doesn't look particularly interesting...

    • @sperenity5883
      @sperenity5883 2 года назад

      Reminds me of the Julia Set, but I'm sure it's coincidental.

  • @luppa79
    @luppa79 2 года назад

    Must be a high quality pen on that plotter!