Handling Missing Data and Missing Values in R Programming | NA Values, Imputation, naniar Package

Поделиться
HTML-код
  • Опубликовано: 27 ноя 2024

Комментарии • 18

  • @RProgramming101
    @RProgramming101  2 месяца назад

    Get my FREE cheat sheets for R programming and statistics (including transcripts of these lessons) here: www.learnmore365.com/pages/membership-r-programming-data-visualization-and-research-methods

  • @francorodriguezravello97
    @francorodriguezravello97 4 месяца назад +5

    I learned this in a course last semester, it was tough at the beginning but I managed to pass. But this video would’ve been extremely useful. Nice explanation 👍

    • @RProgramming101
      @RProgramming101  4 месяца назад

      Thanks. Glad you liked it. Thanks for the feedback. 😀

  • @ayoubelyaagoubi4278
    @ayoubelyaagoubi4278 Месяц назад +1

    very good tutorial, thanks !

  • @John-v5z
    @John-v5z 4 месяца назад +2

    Hello Dr. Greg Martin, The videos on R programming are very interesting. I have two questions. 1. How can I impute the missing values precipitation of different stations in the basin using Multivariate Imputation by Chained Equations? 2). How can I check the quality of the precipitation and temperature data using RClimDex 1.1?

    • @RProgramming101
      @RProgramming101  4 месяца назад

      Hi there. Can’t get into this in the comment section (too complicated) but will try to create a video about it.

    • @John-v5z
      @John-v5z 3 месяца назад

      @@RProgramming101 Thanks. How can I reach you?

  • @MamanaCISSE
    @MamanaCISSE 4 месяца назад

    Really amazing.

  • @AgneKif
    @AgneKif 2 месяца назад

    Hi, thaks for the video! When I make the ggplot checking for interations between NA and varibels, I get a plot with circles in rows, both in the false and the true grahps. Is that because my data NA varibels are really not random ?
    Thanks in advance

  • @aminajumagidudu6118
    @aminajumagidudu6118 3 месяца назад

    Hello Dr. Greg Martin when i execute that same code for the relationship between Ozone and wind my histogram never shows. I am getting this error
    "Error in `mutate()`:
    ℹ In argument: `...

    • @Mark-ob5ip
      @Mark-ob5ip 3 месяца назад

      I got this same error originally. Did you close your parenthesis on the mutate() function?
      airquality %>%
      mutate(
      Missing_Ozone = factor(is.na(Ozone), # true or false condition, is Ozone missing?
      levels = c("TRUE","FALSE"),
      labels = c("Missing", "Not Missing"))) %>%
      ggplot(aes(x=Wind, fill = Missing_Ozone)) +
      geom_histogram() +
      labs(
      title = "Distribution of Wind Speeds for Missing vs Non-Missing Ozone Values",
      x = "Wind Speed",
      y = "Ozone Observations",
      fill = "Missingness") +
      theme_bw()

  • @M.Nagah89
    @M.Nagah89 4 месяца назад +1

    I think dlookr package is easier in handlig missing values and outliers

  • @truth4375
    @truth4375 4 месяца назад

    I need to be an expert in data analysis i need help

    • @RProgramming101
      @RProgramming101  4 месяца назад

      Here to help.

    • @truth4375
      @truth4375 4 месяца назад

      @@RProgramming101 how can I connect with you