How to implement Random Forest from scratch with Python

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 22

  • @annawilson3824
    @annawilson3824 Год назад +7

    Great! To make it completely awesome, I guess n_features should be random as well, because in RF, the "random" aspect comes from two main sources:
    -Each tree is built from a random subset of the data (known as bootstrap sampling).
    -At each split in the tree, a random subset of features is considered.

  • @VritanshKamal
    @VritanshKamal Год назад +2

    Why didn't I find this playlist b4 !! Great content. !

  • @Igormenphito
    @Igormenphito Год назад +2

    Amazing video, thank you for this!

  • @franckchen233
    @franckchen233 9 месяцев назад

    You are saving my life rn 🙏

  • @KitkatTrading2024
    @KitkatTrading2024 6 месяцев назад

    You are amazing! Thank you!

  • @no4ura459
    @no4ura459 Год назад +2

    I've looked to DT and RF videos and they are very cool !!! By the way will you guys plan to upload video on gradient boosting?? Pleaaaseee ❤

  • @AHMADKELIX
    @AHMADKELIX Год назад +1

    permission to learn, miss. thank you

  • @mohamedhendy5556
    @mohamedhendy5556 Год назад

    Can we use the same code for a regression task?

  • @zelcadiana1337
    @zelcadiana1337 Год назад

    Hi. I am using random forest regression models to predict the mortality rate. My features have different dimensions, like millions, percents, thousands, etc. Do I need to do a standardization on my data before starting to built the models? Or any other kind of data transformation?

  • @pawlyk
    @pawlyk 2 года назад

    Great. Please, add the previous video to the playlist.

    • @AssemblyAI
      @AssemblyAI  2 года назад

      Thank you for the heads up!

  • @bzvn3200
    @bzvn3200 10 месяцев назад +2

    Hi, it's a good video, but I want to ask why you didn't implement the Random Subspace Method? Without it, it turns out that you have implemented bagging over trees. The Random Subspace Method is very important because it reduces error correlation between basic algorithms in random forest, which reduces variance of errors

  • @thomaswolff3261
    @thomaswolff3261 Год назад +1

    Excellent video! Could you add code for getting the out-of-bag accuracy metric from the random forest? Thank you!

  • @MrBaik123
    @MrBaik123 2 года назад

    thank you for the informative video 👍

    • @AssemblyAI
      @AssemblyAI  2 года назад

      You're very welcome Aiman!

  • @exometria
    @exometria 2 года назад

    How do we print the predictions so we can see what it looks like? Just "print(predictions)?"

  • @geethamegharaj5556
    @geethamegharaj5556 Год назад

    Please share the code

  • @sanpavlovich9726
    @sanpavlovich9726 Год назад

    How about np.random.choice(n_samples, n_samples // 3)? It will correspond to random subsamples method and help to decrease correlation between trees, so it should improve accuracy. And thank you for video!

  • @spitfirelast8761
    @spitfirelast8761 Год назад

    why does mine say error index has 0?