How does CONSTANT SPEED PROPELLER work?

Поделиться
HTML-код
  • Опубликовано: 1 июн 2024
  • A constant speed unit (variable-pitch propeller) is a complex topic. This video is a simplified representation of the mechanics behind a common CSU. We hope you will enjoy and find this explainer useful.
    Test your knowledge in this video: • Test your aviation kno...
    If you do like our vides, we'd love you to subscribe to our channel. Each subscription means a lot to us and it helps us grow.
    For your viewing pleasure we do not put overlay ads in our videos. But you can support us on our website:
    Visit flight-club.com.au to find out how.
    Thank you so much for watching!

Комментарии • 139

  • @cdg9552
    @cdg9552 3 года назад +208

    30 pages in my ATPL book or simply a couple of minutes watching with perfect visualizations to memorize it a hundred times better. Thank you for your effort. I‘d love to see more ATPL related!

    • @flightclubonline
      @flightclubonline  3 года назад +5

      I'm so pleased you found it useful. Thanks for your feedback.

    • @Echo_Lima
      @Echo_Lima Год назад +5

      same here , atpl student in greece, thank you very much

    • @sigitagusprasetyo6962
      @sigitagusprasetyo6962 Год назад +2

      Perfect

    • @1UTUBEUSERNAME
      @1UTUBEUSERNAME 10 месяцев назад +1

      I agree 100%. Excellent visuals along with a perfect explanation. Thanks for putting in the time.

    • @bitcoinforex6963
      @bitcoinforex6963 4 месяца назад

      Facts

  • @boogerwood
    @boogerwood Год назад +12

    Hands DOWN the best explanation I’ve found! Brilliant!

  • @JacoJohan46664
    @JacoJohan46664 2 года назад +3

    Thank you for the simplicity! Now I can read my maintenance engineering textbook with the basic understanding that it assumes I already have.

  • @Jcakman
    @Jcakman 4 года назад +62

    Thats amazing! you cant even imagine how much we appreciate to these efforts made to make this video happen!

    • @flightclubonline
      @flightclubonline  4 года назад +4

      We appreciate you watching and the feedback too. Thank you!

  • @hyperaspiste
    @hyperaspiste Год назад +7

    My ATPL course was so unclear, thanks to you this mecanism has become very clear ! It's not an easy mecanism to understand but you managed to explain it perfectly.

  • @sharoz6300
    @sharoz6300 3 года назад +5

    This is "The Best" explanation of CSU and variable pitch propeller ❤️

  • @abdelg450
    @abdelg450 6 месяцев назад +2

    It is a perfect video and you speak very clear, thank you.

  • @Catarrhini.
    @Catarrhini. 4 года назад +18

    that visualisation is as brilliant as the mechanics it shows. Thank you very much for your awesome videos. I learn a lot from you.

  • @ValbbyRod
    @ValbbyRod 2 месяца назад +1

    studying this for my oral test over constant speed propellers ! thanks 🙏

  • @miguelraulgonzalez7744
    @miguelraulgonzalez7744 3 года назад +2

    This is the best Constant Speed Propeller explanation on internet. Congratulations

  • @JC-cw1ww
    @JC-cw1ww Год назад +3

    Fabulous video. One can really picture how the whole system works in a way that makes perfect sense.

  • @sachinkumar064
    @sachinkumar064 9 месяцев назад +1

    What a brilliant video, covering each and every relevant detail.
    Fantastic.

  • @yuhocho6107
    @yuhocho6107 2 года назад +9

    One of the best explanations I’ve ever seen! Great job and thank you for the effort!!

  • @Maclyn.Stringer_CFI
    @Maclyn.Stringer_CFI Год назад +1

    As has been said by others in these comments. This is the best explanation with video explaining the CSP on the Internet!

  • @theschoolagency
    @theschoolagency 4 года назад +3

    no other explanation, is as concise and precise as these flight-club animations. So well scripted, edited and animated. I refer to all of them for my PPL

  • @ArunKumar-wc2uf
    @ArunKumar-wc2uf 3 года назад +3

    The best explanation on the internet regarding Constant Speed Propellers. You Sir are amazing.

  • @alexc5449
    @alexc5449 Год назад +1

    These explanations are so precise, concise, and well put together. Thank you for your hard work.

  • @randyrodriguez4419
    @randyrodriguez4419 4 месяца назад +1

    This was truly amazing

  • @Minyx03
    @Minyx03 6 месяцев назад +1

    Super useful knowledge! Thanks!!

  • @georgeb6909
    @georgeb6909 3 года назад +6

    Studying for my ATPL and this was very straight to the point and well explained. Thank you!

  • @vineetgajbhiye4557
    @vineetgajbhiye4557 Год назад +2

    Thankyou so much for such a great and amazing ever seen animation !!

  • @sharoz6300
    @sharoz6300 4 года назад +3

    Great to see you back. Be more frequent please 👍

  • @shawnsohtra9975
    @shawnsohtra9975 2 года назад +1

    I’m glad I watched this before my CPL flight test!

  • @Dana_Bellamy
    @Dana_Bellamy 2 месяца назад

    Thanks so much! This is a wonderful explanation!

  • @bg2dxg601
    @bg2dxg601 4 года назад +1

    Thank you so much for your video,this is absolutely the best the video about the propeller pitch control and CSU! Your beneficence is boundless!

  • @FunWorldGame1993
    @FunWorldGame1993 2 года назад +10

    Really good. Just one thing, on the DA42 all is opposite. To achieve high pitch and low RPM oil should flow from the propeller to the oil tank and vice versa.

    • @DEEPAKKUMAR-zz1wy
      @DEEPAKKUMAR-zz1wy 2 года назад

      From this vedio, what I got to see that while at climb or takeoff, low pitch and high rpm is required for which oil goes back from propeller to oil tank.

  • @challacustica9049
    @challacustica9049 2 года назад +1

    Came looking for the kind used in power systems on commercial planes, had no clue this existed. Thank you for this content.

  • @jamison7soccer
    @jamison7soccer Год назад +1

    Awesome video! Great visuals.

  • @andoletube
    @andoletube 2 года назад +1

    Great Explanation and visuals. I watched 3 other videos on the same subject and found them rambling and disorganised, with no proper visuals. This was perfect!

    • @flightclubonline
      @flightclubonline  2 года назад +1

      Awesome, thank you very much for such positive feedback!

  • @Ezel21love
    @Ezel21love Год назад +1

    Amazing explanation, can't be better than this!

  • @mohammedsalah5416
    @mohammedsalah5416 2 года назад +1

    I'm so glad I found this on my recommended videos page! Thank you!!

  • @johnroberts7529
    @johnroberts7529 Год назад +1

    Your videos are such clear and elegant things. Please keep up the excellent work.

  • @ricp
    @ricp 2 года назад +1

    All your videos are of superb quality.. Thanks a lot for the effort put in making this, it's greatly appreciated

  • @AbhidwipNath
    @AbhidwipNath 3 года назад +1

    Lot of thanks. Very nicely explained. Huge appreciations!

  • @uk8804
    @uk8804 4 года назад +1

    Thank you very much. I appreciate your videos so much and am so happy you are making them again. I'm from Australia and about to sit my PPL exam. I read the two main authors I Australia for this topic and couldn't only sort of get my head around it. Your video, excellent!

  • @HS-qk2pz
    @HS-qk2pz Год назад +1

    Thank you for this video. So easy to learn and understand!

  • @GeorgeChaidaris
    @GeorgeChaidaris 3 года назад +1

    Best explanation around. Thank you!

  • @denismorissette419
    @denismorissette419 2 года назад +1

    All the serie of those videos are very very good and simple to understand. I also want to tell that this women has a beautiful and clear diction and a very cute accent.

  • @tcjwth
    @tcjwth Год назад +1

    Brilliant video

  • @martinhsl68hw
    @martinhsl68hw 2 года назад +1

    This is beautifully explained! Thank you

  • @KLee-yj7vs
    @KLee-yj7vs 3 года назад +1

    This is amazing and very clear! Thank you! :)

  • @legoboyM
    @legoboyM 3 года назад +1

    Great video, found this explanation very helpful!

  • @DavK637
    @DavK637 4 месяца назад

    Thank you for this

  • @Jay-fv1hc
    @Jay-fv1hc 3 года назад +4

    This video was 👌🏻💯+10

  • @alessiolucchesi814
    @alessiolucchesi814 3 года назад +1

    Stunning video! thanks

  • @powerjets3512
    @powerjets3512 2 года назад +1

    Ah that's how they work. Very well explained. I think James Clerk-Maxwell wrote something on this subject a while ago.
    Kudos for the like and to those who know who James Clerk-Maxwell was. For others he wrote a paper "On governers" in 1868. It gave the mathematics behind designing governors as used with Watt's steam engine. The first paper on control. He also combined electricity and magnetism to show them as being one. Later another physicist stood on his shoulders who is today sadly much better known than Clerk-Maxwell.

  • @gombo-ochirazjargal8386
    @gombo-ochirazjargal8386 3 года назад +1

    Very nice and interesting visualization. Thanks for sharing this. It helps me a lot to understand this control system.

  • @KRISHNA_VARMA
    @KRISHNA_VARMA 2 года назад +1

    Fabulous explanation . Thank you so much.😀

  • @TheBryanLiu
    @TheBryanLiu Год назад +1

    Thanks!

  • @uroscadez
    @uroscadez 3 года назад

    awesome explanation. best on WWW. thank you!

  • @zakariaelgarda8681
    @zakariaelgarda8681 Год назад

    I'm tired to keep trying understand this system in my books still complicated but know I'm so satisfied with your explication it's very helpful thank you so much

  • @LWH2011
    @LWH2011 2 года назад

    Excellent animation!

  • @bilals2110
    @bilals2110 3 года назад +1

    This video was very very useful👍

  • @XPoChangLinX
    @XPoChangLinX 3 года назад +3

    Keep in mind the direction of actuation is often different be single engine and multi engine aircraft. Generally... Multi engine aircraft will move into a feathered position when there is no engine oil pressure and single engine aircraft will move to max fine.

  • @StjepanNikolic
    @StjepanNikolic 3 года назад +2

    Thanks for the video! You got a new subscriber. However, a couple of suggestions: at the beginning of video when showing fine and coarse pitch I would add "feathered" position. Secondly, when climbing/descending, the order of using throttle lever, eg. when Climbing (adding power): Pitch first, Throttle second; when Descending (reducing power): Throttle first, Pitch second. Cheers

    • @flightclubonline
      @flightclubonline  3 года назад +3

      Thanks for the suggestion. I should make a follow up video on this topic.

  • @mohammedpilot2335
    @mohammedpilot2335 Год назад +1

    Thanks

  • @Krabbykrabbkrabb
    @Krabbykrabbkrabb 3 месяца назад

    napaka lupit

  • @archerpiperii2690
    @archerpiperii2690 3 года назад +1

    Greetings from Phoenix, Arizona. About to start working on a "complex" endorsement - that is what we call it in the states anyway. Thank you very much for this presentation, it is clear and concise! I wish more explanation videos were this good.
    Peace.

    • @makeupyourmindinator
      @makeupyourmindinator 3 года назад +1

      I live in Surprise, Az and if you ever need a passenger for a check flight I’m available Sundays and Mondays.

    • @flightclubonline
      @flightclubonline  3 года назад

      Thank you and best of luck with the endorsement.

    • @archerpiperii2690
      @archerpiperii2690 3 года назад

      @@flightclubonline Thank you. I completed and got the endorsement. My instructor was impressed with how well I knew the governor operation!

    • @archerpiperii2690
      @archerpiperii2690 3 года назад

      @@makeupyourmindinator Surprise is a nice area, I fly over it when going KDVT => KBXK

    • @flightclubonline
      @flightclubonline  3 года назад +1

      Well done! That's fantastic news.

  • @michaelhope7620
    @michaelhope7620 3 года назад +4

    This is only correct for single acting non-counterweighted propellers. The Governor is not always directly driven by the crankshaft, many are driven from the accessory drive, or even the from the gun synchronizer drive, i.e. P&W 985 for one.

    • @FlyNAA
      @FlyNAA Год назад

      This is just a general intro to the basic concept. The point is, it turns a speed proportional to the engine. Any point the motion gets picked off from, is all the same result.

  • @terencetay9051
    @terencetay9051 2 года назад +1

    Hi flight-club, what great animations! Must have put in a lot of effort. Can I use some screen grabs from this video to share with my students please?

    • @flightclubonline
      @flightclubonline  2 года назад +1

      Of course, no problem 😊

    • @terencetay9051
      @terencetay9051 2 года назад

      @@flightclubonline Thank you. They'll be introduced to your channel and videos! :) Doesn't hurt for them to gain extra knowledge.

  • @chard6649
    @chard6649 6 месяцев назад

    I'm wondering if this only applies to McCauley because Hartzell oil pressure does the fine pitch part?

  • @khalidmehmood6481
    @khalidmehmood6481 Год назад

    Good video. For pitch up condition, torque should be high. Kindly correct me.

  • @brunoboj504
    @brunoboj504 Год назад

    What happens with blade angle when we add power in cruise with constant speed prop? Does blade angle also increase?

  • @waitdaniel
    @waitdaniel 4 года назад +1

    great explanation, cheers. As you said the pilot increase the RPM but the plane pitched up, the governor would automatically adjust the blade angle to compensate the RPM?

    • @michaelgeorge3092
      @michaelgeorge3092 3 года назад

      my understanding is yes. as pilot increases throttle, rpm goes up. gov increases pitch to bring it back down. in doing so prop has more bite, more thrust. if the pilot pulled up without increasing throttle, then prop loading will slow rpm down, causing governor to reduce pitch, allowing speed to pick up again. so rpm remains constant. caveat is prop will be at lower pitch during climb.

  • @elendhdrennaidoo390
    @elendhdrennaidoo390 2 года назад

    Hi could you please explain at the beginning of the video (1:30) it says as engine RPM increases(small blade angle) the fly weights move OUTWARDS and as the engine RPM decreases(large blade ) the flyweight move INWARDS , later on in the videos(3:45) it says as to maintain the high RPM (small blade angle) the flyweights now move INWARDS and to maintain a low RPM the flyweights now move OUTWARDS, which is contradicting what was said in the beginning of the video. Could you kindly provide some clarity? Thanks

  • @aviationinspired4414
    @aviationinspired4414 Год назад

    This is a great animation, except one thing that make me confused. For PA44-180, when aircraft overspeed, oil leaves the prob hub and make pitch angle increases and vice versa. This is seems opposite animation in this video. Is there the general concept for all aircraft's CSU, or it differ aircraft by aircraft. Btw, that a great animation.

  • @brodricj3023
    @brodricj3023 Месяц назад

    so how does the oil pressure get into the propeller hub when all that stuff is spinning?

  • @Thomson_Tam
    @Thomson_Tam 2 месяца назад

    Be careful this is for single-engine aircraft. With oil pressure lowering the RPM, and nitrogen gas/spring send the PRM towards the high. So in the case of losing oil pressure, the propeller will work at full fine position. In multi-engine, it is completely opposite, oil pressure increases the RPM(fine), nitrogen gas/spring decreases the RPM(Coarse/feather). So in case of engine failure in a multi-engine aircraft, the pilot can feather the bad engine to decrease drag.

  • @PavelKryuchkov
    @PavelKryuchkov 4 года назад

    What does CSUB stand for?

  • @daniellelue6755
    @daniellelue6755 Год назад

    Is the yellow part the nitrogen?

  • @erickborling1302
    @erickborling1302 Месяц назад

    Why is the propeller backwards. Spins clockwise as seen from the front.

  • @erickborling1302
    @erickborling1302 Месяц назад

    Blade angle is referred to as low pitch or high pitch, not coarse/fine.

  • @davideildella5185
    @davideildella5185 3 года назад

    why is it that in a free turbine when the plane shuts down (less RPM) the prop feathers (pitch increases)? wouldn`t the oil lines have to be swapped and the propeller adjust pitch the other way around?

    • @XPoChangLinX
      @XPoChangLinX 3 года назад +1

      They're depicting a single engine aircraft where the engine is designed to windmill when oil pressure is lost. Most multies are designed to feather when oil pressure is lost. Direct drive turbines like most multi pistons have a locking pin that drops in place to prevent the props from feathering when RPM is too low.

  • @williamalcorn3913
    @williamalcorn3913 2 года назад

    The animation would be for a non counterweighted prop as the animation showed the engine oil flowing into the prop and increasing to a more course position

  • @samcoder6900
    @samcoder6900 Год назад +1

    Thanks a lot for the great work but if I may, I think the explanation is fundamentally misleading by confusing variable pitch propellers and constant speed ones. It is true that CSU achieve their goal by varying blade angle but the goal of a CSU is first and foremost to keep the engine running at a fairly constant RPM (like a gearbox) , the aerodynamically phenomena on the propeller being the mean rather than the end goal.
    So saying that CSU are the answer to fixed pitch propellers not having an optimal AoA in most phases of flight isn't correct: variable pitch propellers without a CSU do exist and are a solution to that problem. The philosophy behind CSU has more to do with engine power and efficiency.
    It is indeed a complex topic and comments and suggestions are welcome.

  • @manjunathayr9348
    @manjunathayr9348 3 года назад

    clockwise spin or anti-clockwise?

  • @roybenjamin9347
    @roybenjamin9347 3 года назад

    Sounds like this is for a naturally unfeathered prop where oil pressure increases blade angle (coarser), whereas other videos show a naturally feathered prop where oil pressure decreases blade angle (finer).

  • @brahimbentadjine8822
    @brahimbentadjine8822 Год назад +1

    i think the oil pump tend the porpeller to decrease the pitch angle not to increase't

  • @Wloppish
    @Wloppish 2 года назад

    Isn’t this something that could be used in human sized quadcopter?
    How energy efficient is it?

  • @hmabboud
    @hmabboud 9 месяцев назад

    Why all of this governer thing if the PIC can just control the flow of the oil from the pilot valve instead?

  • @eugeneoreilly9356
    @eugeneoreilly9356 3 года назад +1

    The engine can also have a governor that maintains engine RPM at the desired throttle setting.

  • @ptyeueiiwjd
    @ptyeueiiwjd 22 дня назад

    Wait... Right off the bat I dont understand why in the fixed pitch example, a change in airspeed would change prop AOA. I'm now deep down the rabbit whole. Send Help.

  • @vasilisz4916
    @vasilisz4916 2 года назад

    F to the guy who came up with that idea lol

  • @jasonpereira4024
    @jasonpereira4024 2 года назад

    So stick shift for planes :p

    • @Bendigo1
      @Bendigo1 2 года назад

      More like automatic but with gear selection.

  • @ashwath2207
    @ashwath2207 Год назад

    can I get a pin ?

  • @LawatheMEid
    @LawatheMEid 4 года назад +1

    If the airplane ascending it must increase speed to prevent stall so the blades must be increase angle to take a huge bite of air so the engine must increase the torque.. and opposite is right descending .. not as you mention in video!

    • @michaelgeorge3092
      @michaelgeorge3092 3 года назад

      kinda following your thinking. as it climbs, prop loading slows engine rpm, this in turn causes gov to reduce pitch to maintain rpm. but you have less bite, less thrust. only way to maintain thrust is to increase power. right ?