France | A Nice Algebra Problem | Math Olympiad

Поделиться
HTML-код
  • Опубликовано: 21 янв 2025

Комментарии • 17

  • @9허공
    @9허공 Месяц назад +1

    We can define the Domain of x as followed:
    x + 1 ≥ 0 and x^2 - 1 ≥ 0 => x ≥ -1 and (x ≥ 1 or x ≤ -1 ) => x = -1 or x ≥ 1
    8:43 x = 0, (1 - √5)/2 can be discarded immediately.

    • @SALogics
      @SALogics  Месяц назад +2

      Yes, you are right! ❤

  • @林進生-k5l
    @林進生-k5l Месяц назад +1

    Let y = sqrt(x+1) then y>0
    y^2 = x+1
    x^2 - 1 = (x+1)•[(x+1) - 2]
    =(y^2)•(y^2 - 2) = (y^2 - 1)^2 - 1
    (y^2 - 1)^2 - 1 = y
    (y^2 - 1)^2 = y + 1
    (y +1)•[(y - 1)^2] = 1
    [(y - 1) + 2]•[(y - 1)^2] = 1
    (y - 1)^3 + 2•[(y - 1)^2] = 1

    • @SALogics
      @SALogics  Месяц назад +1

      Very Nice! ❤

  • @ЭльвираБазарова-в1ж
    @ЭльвираБазарова-в1ж Месяц назад +2

    X=-1; 0=0

    • @SALogics
      @SALogics  Месяц назад +1

      Very nice! ❤

  • @davidshen5916
    @davidshen5916 Месяц назад +1

    Y=Sqrt(X+1), Y>=0, X>=-1, |X|>=0, Y^2=X+1, X^2-1=Y, X^-Y^2-1=Y-X-1, (X-Y)(X+Y+1)=0, X+Y+1>0, X=Y, X^2=X+1, X^2-X-1=0, X=(1+Sqrt (5))/2, Or X=(1-Sqrt (5))/2, refuse

    • @SALogics
      @SALogics  Месяц назад +1

      Very nice! ❤

  • @فیروزاهنگری
    @فیروزاهنگری Месяц назад +1

    x^2-1>=0 , x+1>=0 , x^2>=1 , x>=-1
    (x-1)(x+1)=√x+1 , √x+1=a so
    (x-1)a^2=a , (x-1)a^2-a=0
    a[(x-1)a-1]=0 , a=0 x=-1 acceptable
    (x-1)a-1=0 , a=1/x-1 , √x+1=1/x-1
    (√x+1=1/x-1)^2 , x^3-x^2-x=0
    x(x^2-x-1)=0 , x=0 unacceptable
    x^2-x-1=0 , x=(1+√5)/2 acceptable

    • @SALogics
      @SALogics  Месяц назад +1

      Very nice! ❤

  • @key_board_x
    @key_board_x Месяц назад +1

    x² - 1 = √(x + 1) → where: (x² - 1) ≥ 0 → x ⋲ ]- ∞ ; - 1] U [1 ; + ∞[
    [x² - 1]² = [√(x + 1)]²
    x⁴ - 2x² + 1 = x + 1
    x⁴ - 2x² - x = 0
    (x⁴ - 2x²) - x = 0
    (x² - 1)² - 1 - x = 0
    (x² - 1)² - (x + 1) = 0
    [(x + 1).(x - 1)]² - (x + 1) = 0
    (x + 1)².(x - 1)² - (x + 1) = 0
    (x + 1).[(x + 1).(x - 1)² - 1] = 0
    (x + 1).[(x + 1).(x² - 2x + 1) - 1] = 0
    (x + 1).[x³ - 2x² + x + x² - 2x + 1 - 1] = 0
    (x + 1).[x³ - x² - x] = 0
    x.(x + 1).(x² - x - 1) = 0
    First case: x = 0 → rejected, because the condition
    Second case: (x + 1) = 0
    x + 1 = 0
    x = - 1
    Third case: (x² - x - 1) = 0
    x² - x - 1 = 0
    Δ = (- 1)² - (4 * - 1) = 1 + 4 = 5
    x = (1 ± √5)/2
    First possibility:
    x = (1 - √5)/2 → rejected, because the condition
    Second possibility:
    x = (1 + √5)/2
    Solution = { - 1 ; (1 + √5)/2 }

    • @SALogics
      @SALogics  Месяц назад +1

      Very nice! ❤

  • @ВалерийВолков-с9б
    @ВалерийВолков-с9б Месяц назад +1

    Минус один, решил за 30 секунд подбором

    • @SALogics
      @SALogics  Месяц назад +1

      Очень хорошо! ❤

  • @ЭльвираБазарова-в1ж
    @ЭльвираБазарова-в1ж Месяц назад +1

    X=-1; 0=0

    • @SALogics
      @SALogics  Месяц назад +1

      Very nice! ❤