A Very Nice Math Olympiad Problem | Solve for x | Algebra

Поделиться
HTML-код
  • Опубликовано: 25 ноя 2024
  • In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick.
    Please feel free to share your ideas in the comment section.
    And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.

Комментарии • 20

  • @MrPandaJJ
    @MrPandaJJ Месяц назад +5

    At the beginning of the 2nd page (~5:18), you know
    x^4 - 4x^3 - 6x^2 - 4x + 1 = 0
    Observe that flipping the sign of 6x^2 gives you (1-x)^4,
    so we can in fact rewrite the equation as
    (x^4 - 4x^3 + 6x^2 - 4x + 1) - 12x^2 = 0
    i.e.
    (1-x)^4 - 12x^2 = 0
    This is the difference of two squares,
    factorize it and you would get two quadratic equations, which give you the 4 solutions of x.
    It would save you some times compare with the t substitution.

    • @dan-florinchereches4892
      @dan-florinchereches4892 Месяц назад +1

      This is the solution I saw but later I also noticed this is a palindromic equation so dividing by x^2 can also work for it

    • @SpencersAcademy
      @SpencersAcademy  Месяц назад +1

      Great job 👏

    • @師太滅絕
      @師太滅絕 Месяц назад

      (continue) [(1-x)^2 - sqrt(12x)][(1-x)^2 + sqrt(12x)] = 0
      case A (1-x)^2 - sqrt(12x) = 0
      case B(1-x)^2 + sqrt(12x) = 0

    • @MrPandaJJ
      @MrPandaJJ Месяц назад +1

      @@師太滅絕
      not sqrt(12x)
      but sqrt(12)x
      therefore much easier than you think

  • @ernestdecsi5913
    @ernestdecsi5913 Месяц назад +1

    A very nice solution indeed.

  • @gintautasruksenas6129
    @gintautasruksenas6129 Месяц назад +1

    Ačiū!

    • @SpencersAcademy
      @SpencersAcademy  Месяц назад

      My pleasure, sir 🙏
      Thanks for the Super Thanks 😊
      I'm indeed grateful 🙏

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад

    Risolvo la quartica..2+2x^4=1+6x+4x^2+6x^3+x^4..dopo i calcoli risulta (x^2-3x+1)^2-15x^2=0..poi è semplice .

  • @MrPandaJJ
    @MrPandaJJ Месяц назад +5

    At the end you say all 4 solutions are real not complex, however it is not true.
    x_3 and x_4 are complex, as [3 - 2*sqrt(3)] is, in fact, negative.

  • @JoseManuel-zn8lm
    @JoseManuel-zn8lm Месяц назад

    Hola
    Las soluciones son todas válidas al hacer la comprobación?
    Gracias

  • @jeanluchenry2152
    @jeanluchenry2152 Месяц назад +5

    Pour x3,x4, c'est 2 nombres complexes car 3-2racine3 est négatif

  • @souzasilva5471
    @souzasilva5471 Месяц назад

    3-2V3 < 0 Logo sqrt(3-2sqrt(3) i

  • @key_board_x
    @key_board_x Месяц назад

    (1 + x⁴)/(1 + x)⁴ = 1/2
    2.(1 + x⁴) = (1 + x)⁴
    2 + 2x⁴ = (1 + x)².(1 + x)²
    2 + 2x⁴ = (1 + 2x + x²).(1 + 2x + x²)
    2 + 2x⁴ = 1 + 2x + x² + 2x + 4x² + 2x³ + x² + 2x³ + x⁴
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → the aim, if we are to continue effectively, is to eliminate terms to the 3rd power
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → let: x = z - (b/4a) → where:
    b is the coefficient for x³, in our case: - 4
    a is the coefficient for x⁴, in our case: 1
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → let: x = z - (- 4/4) → x = z + 1
    (z + 1)⁴ - 4.(z + 1)³ - 6.(z + 1)² - 4.(z + 1) + 1 = 0
    (z + 1)².(z + 1)² - 4.(z + 1)².(z + 1) - 6.(z² + 2z + 1) - 4z - 4 + 1 = 0
    (z² + 2z + 1).(z² + 2z + 1) - 4.(z² + 2z + 1).(z + 1) - 6z² - 12z - 6 - 4z - 4 + 1 = 0
    (z⁴ + 2z³ + z² + 2z³ + 4z² + 2z + z² + 2z + 1) - 4.(z³ + z² + 2z² + 2z + z + 1) - 6z² - 12z - 6 - 4z - 4 + 1 = 0
    (z⁴ + 4z³ + 6z² + 4z + 1) - 4.(z³ + 3z² + 3z + 1) - 6z² - 16z - 9 = 0
    z⁴ + 4z³ + 6z² + 4z + 1 - 4z³ - 12z² - 12z - 4 - 6z² - 16z - 9 = 0
    z⁴ - 12z² - 24z - 12 = 0
    z⁴ - (12z² + 24z + 12) = 0
    z⁴ - 12.(z² + 2z + 1) = 0
    z⁴ - 12.(z + 1)² = 0
    z⁴ - [4.(z + 1)² * 3] = 0
    z⁴ - [2².(z + 1)² * (√3)²] = 0
    (z²)² - [2.(z + 1).√3]² = 0 → recall: a² - b² = (a + b).(a - b)
    [z² + 2.(z + 1).√3].[z² - 2.(z + 1).√3] = 0
    First case: [z² + 2.(z + 1).√3] = 0
    z² + 2.(z + 1).√3 = 0
    z² + 2z√3 + 2√3 = 0
    Δ = (2√3)² - (4 * 2√3) = 12 - 8√3 ← it's negative → complex number
    Δ = 12 - 8√3
    Δ = - (8√3 - 12)
    Δ = i².(8√3 - 12)
    Δ = 4i².(2√3 - 3)
    z = [- 2√3 ± 2i√(2√3 - 3)]/2
    z = - √3 ± i√(2√3 - 3)
    Second case: [z² - 2.(z + 1).√3] = 0
    z² - 2.(z + 1).√3 = 0
    z² - 2z√3 - 2√3 = 0
    Δ = (- 2√3)² - (4 * - 2√3) = 12 + 8√3 = 4.(3 + 2√3)
    z = [2√3 ± 2√(3 + 2√3)]/2
    z = √3 ± √(3 + 2√3)
    Recall: x = z + 1
    When: z = - √3 ± i√(2√3 - 3)
    → x = 1 - √3 ± i√(2√3 - 3)
    When: z = √3 ± √(3 + 2√3)
    → x = 1 + √3 ± √(3 + 2√3)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    {1+1 ➖ }+{x^4+x^4 ➖ }/4x^4={2+x^8}/4x^4=2x^8/4x^4 2x^2^3/2^2x^2^2 1x^1^1^1/1^1x^1^2 x^1^2 (x ➖ 2x+1).

  • @jimwinchester339
    @jimwinchester339 Месяц назад

    Why not begin by cancelling out one of the powers of (x + 1) in the denominator with the numerator, then flipping over both sides of the equation, giving (x+1)^ 3 = 2? Surely that would be a lot simpler.

  • @Lemda_gtr
    @Lemda_gtr Месяц назад

    👍🏻🫡 waw great

  • @milencenov6421
    @milencenov6421 Месяц назад

    4 real solutions ??? BS !!!
    Note that √(3 - 2√3) is NOT real, because 3 - 2√3 is less than 0.
    Also note that (x - 1)^4 expands very similarly to (x + 1)^4. All even powers are the same and the odd powers of x have minuses.
    After you cross multiplied and rearranged, you could have noticed that:
    (x - 1)^4 = 12 * x^2
    Thus:
    (x - 1)^2 = |x * 2√3|
    (you may also write plus minus and normal brackets instead of the modulus)
    Now you have the same 2 cases you arrived at.
    x^2 - 2x + 1 = -x * 2√3
    x^2 - 2(1 - √3)x + 1 = 0
    Or
    x^2 - 2x + 1 = x * 2√3
    x^2 - 2(1 + √3)x + 1 = 0
    Note that when B is equal to -2(1 - √3), the discriminant is negative, because B^2 < 4AC.