Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
# 完整程式import syssys.path.append(r'D:\Users\Pu_chang\Desktop\資料分析\UsefulML')from PreProcessing import TS_PreProcess, External_Variableimport datetimeimport itertools # grid_searchimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdfrom prophet import Prophet from prophet.diagnostics import performance_metrics, cross_validationimport warningswarnings.filterwarnings('ignore')'每個產品於每個商店銷量,時間 = d_1 ~ d_1913'path = 'D:/Users/Pu_chang/Desktop/資料分析/3. 推論分析/時間序列/data/M5/'validation = pd.read_csv(path + 'sales_train_validation.csv', encoding='utf-8',header=0)calender = pd.read_csv(path + 'calendar.csv', encoding='utf-8',header=0)evaluation = pd.read_csv(path + 'sales_train_evaluation.csv', encoding='utf-8',header=0)greater_than_zero = (validation.iloc[:,6:] > 0).sum(axis=1).reset_index()'易 : 全 > 0的跑,5859,2011-01-29 ~ 2016-04-24'def split_train_test(item, df1, df2) : train = df1.loc[item].reset_index().iloc[6:,:] train.columns = ['d', 'y'] train['y'] = train['y'].astype(int) train = pd.merge(train, calender, on="d",how='inner') train = train.sort_values(by = 'date', ascending=True) test = df2.loc[item].reset_index().iloc[6:,:] test.columns = ['d', 'y'] test['y'] = test['y'].astype(int) test = pd.merge(test, calender, on="d",how='inner') test['d'] = test['d'].replace(to_replace ='d_', value = '', regex = True).astype(int) test = test.loc[test['d']>=1914] test = test.sort_values(by = 'date', ascending=True) return train, testtrain, test = split_train_test(5859, validation, evaluation)
# 完整程式
import sys
sys.path.append(r'D:\Users\Pu_chang\Desktop\資料分析\UsefulML')
from PreProcessing import TS_PreProcess, External_Variable
import datetime
import itertools # grid_search
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from prophet import Prophet
from prophet.diagnostics import performance_metrics, cross_validation
import warnings
warnings.filterwarnings('ignore')
'每個產品於每個商店銷量,時間 = d_1 ~ d_1913'
path = 'D:/Users/Pu_chang/Desktop/資料分析/3. 推論分析/時間序列/data/M5/'
validation = pd.read_csv(path + 'sales_train_validation.csv', encoding='utf-8',header=0)
calender = pd.read_csv(path + 'calendar.csv', encoding='utf-8',header=0)
evaluation = pd.read_csv(path + 'sales_train_evaluation.csv', encoding='utf-8',header=0)
greater_than_zero = (validation.iloc[:,6:] > 0).sum(axis=1).reset_index()
'易 : 全 > 0的跑,5859,2011-01-29 ~ 2016-04-24'
def split_train_test(item, df1, df2) :
train = df1.loc[item].reset_index().iloc[6:,:]
train.columns = ['d', 'y']
train['y'] = train['y'].astype(int)
train = pd.merge(train, calender, on="d",how='inner')
train = train.sort_values(by = 'date', ascending=True)
test = df2.loc[item].reset_index().iloc[6:,:]
test.columns = ['d', 'y']
test['y'] = test['y'].astype(int)
test = pd.merge(test, calender, on="d",how='inner')
test['d'] = test['d'].replace(to_replace ='d_', value = '', regex = True).astype(int)
test = test.loc[test['d']>=1914]
test = test.sort_values(by = 'date', ascending=True)
return train, test
train, test = split_train_test(5859, validation, evaluation)