St Petersburg Paradox

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 19

  • @leticiafernandes4241
    @leticiafernandes4241 3 года назад +1

    Thank you Ben! Keep up the great work!

  • @Samtaztic99
    @Samtaztic99 3 года назад +2

    So the St. Petersburg Paradox was a problem in Expected Value Theory, and Expected Utility Theory was developed as a response to solve this problem?

    • @jsun1993
      @jsun1993 2 года назад

      Lmao!

    • @jun341
      @jun341 Год назад

      yes that's the idea proposed by Bernoulli

  • @slashbash25
    @slashbash25 2 года назад

    i dont get it so if you win with heads does that not mean you lose your money on tails requiring you to double down on the bet instead of it doubling the prize?

  • @slashbash25
    @slashbash25 2 года назад

    evry time you win a tales?

  • @slashbash25
    @slashbash25 2 года назад

    and then the other outcome is also wining?

  • @slashbash25
    @slashbash25 2 года назад

    how exactly does the amount of the winnings double when you ''win a tales"?

    • @DankHero
      @DankHero 7 месяцев назад

      he meant that your bet doubles when tales wins

  • @DGodsell
    @DGodsell 2 года назад

    Thanks this was great

  • @immortal8034
    @immortal8034 4 года назад

    Thanks a lot 🙏

  • @slashbash25
    @slashbash25 2 года назад

    im so confused

  • @slashbash25
    @slashbash25 2 года назад

    sorry for the spam i am trying to figure out how to aply this to black or red roulete

    • @jsun1993
      @jsun1993 2 года назад

      In roulette the relevant concept is martingale betting, double or nothing after every loss

    • @slashbash25
      @slashbash25 2 года назад +1

      @@jsun1993 thx

  • @michalk7777
    @michalk7777 3 года назад +1

    So you are basically explaining bitcoin characteristics 101

  • @slashbash25
    @slashbash25 2 года назад

    magic?

  • @Waheezy420
    @Waheezy420 6 месяцев назад

    Only an idiot would pay more than $20 to play this game. You'd have to get tails 5 in a row in order to not lose any money... chances of you losing money is 97%.

    • @DrBenVincent
      @DrBenVincent  6 месяцев назад

      @@Waheezy420 yeah, so this is a good critique of making decisions according to expected utility 👍🏻