19:05 To solve this problem, we need to determine if the hunter can always ensure that the distance between herself and the rabbit is at most 100 after 10^9 rounds, regardless of the rabbit's movements and the points provided by the tracking device. Let's break down the problem and analyze the possibilities. ### Key Points to Consider 1. **Rabbit's Movement**: - The rabbit moves invisibly to a new point \( A_n \) such that the distance between \( A_{n-1} \) and \( A_n \) is exactly 1. 2. **Tracking Device**: - The device gives a point \( P_n \) such that the distance between \( P_n \) and \( A_n \) is at most 1. 3. **Hunter's Movement**: - The hunter moves visibly to a new point \( B_n \) such that the distance between \( B_{n-1} \) and \( B_n \) is exactly 1. ### Strategy for the Hunter The hunter must use the information from the tracking device to reduce the possible area where the rabbit could be. Since the tracking device provides a point \( P_n \) such that \( |P_n - A_n| \leq 1 \), the hunter can use this to her advantage. ### Geometric Interpretation 1. **Initial Condition**: - Initially, the hunter and the rabbit are at the same point: \( B_0 = A_0 \). 2. **Movement and Feedback**: - In each round, the rabbit moves to a point 1 unit away from its previous position. - The tracking device provides a point \( P_n \) within a radius of 1 unit from the rabbit's new position \( A_n \). - The hunter moves to a point 1 unit away from her previous position. ### Ensuring Distance is at Most 100 The main question is whether the hunter can keep the distance to the rabbit within 100 units after 10^9 rounds. - **Distance Maintenance**: - Each round, the hunter moves to reduce the distance to the possible location of the rabbit. - Given the feedback \( P_n \), the hunter can move towards \( P_n \) to potentially reduce the distance to the rabbit. ### Proof Strategy To prove whether the hunter can ensure the distance is at most 100 after 10^9 rounds, we need to consider the worst-case scenario. 1. **Distance Increase**: - If the rabbit moves strategically, it can try to increase the distance from the hunter. - However, the tracking device feedback allows the hunter to know that the rabbit is within a certain radius from \( P_n \). 2. **Hunter's Movement**: - By always moving towards \( P_n \), the hunter ensures she is moving towards the region where the rabbit is likely to be. - The maximum movement is constrained to 1 unit per round, but given the large number of rounds, the cumulative movement must be considered. ### Conclusion After analyzing the problem, we can conclude: - **Yes**, the hunter can ensure that the distance between herself and the rabbit is at most 100 after 10^9 rounds. This is because, with each round, the hunter can use the feedback from the tracking device to move towards the rabbit's vicinity. Although the rabbit is invisible and moves strategically, the tracking device provides enough information for the hunter to gradually reduce the distance, ensuring it remains within a certain bound after a sufficiently large number of rounds. The exact geometry and strategic movement would ensure that the distance does not exceed 100 units after 10^9 rounds. This conclusion assumes optimal movement by the hunter in response to the tracking device's feedback and considering the rules of movement for both the hunter and the rabbit.
一口气看完【我爸是富一代】ruclips.net/video/2BdpAlMRsxs/видео.html
我也去看一下
你做的影片都很好看
进一步说话,谢谢。生命啊
啊???这我油管看得见的???好家伙[dog]
-1代负二代
😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊@@三筑陳
看完整個人都恐怖如斯了😂
最後面那個「我不知道啊,我就聽他每天晚上在房間裡大喊:快放大招啊! 然後他就第一了。」超好笑
這真的超好笑ww
一口氣看完【恐怖如斯】
這篇看完還可以接 【全球智商下降1000倍!】
恐怖如斯 簡直恐怖如斯啊
結果是作了80分鐘的夢
可憐啊,我以為最後很精彩沒想到翻轉那麼快😂😂😂
小時候一定學得很痛苦,長大需要彌補一下這種期望,辛苦了😢
感谢支持
19:05
要解决这个问题,我们需要确定无论兔子如何移动以及定位设备提供的点是什么,猎人是否总能在10^9轮之后确保自己和兔子之间的距离最多是100。让我们分析一下。
### 关键点
1. **兔子的移动**:
- 兔子以隐形的方式移动到一个新的点 \( A_n \),使得 \( A_{n-1} \) 和 \( A_n \) 之间的距离恰好为1。
2. **定位设备**:
- 定位设备提供一个点 \( P_n \),使得 \( P_n \) 和 \( A_n \) 之间的距离至多为1。
3. **猎人的移动**:
- 猎人以可见的方式移动到一个新的点 \( B_n \),使得 \( B_{n-1} \) 和 \( B_n \) 之间的距离恰好为1。
### 猎人的策略
猎人必须利用定位设备提供的信息来减少兔子可能所在的区域。由于定位设备提供的点 \( P_n \) 和兔子的新位置 \( A_n \) 之间的距离至多为1,猎人可以利用这一点。
### 几何解释
1. **初始条件**:
- 最初,猎人和兔子在同一个点:\( B_0 = A_0 \)。
2. **移动和反馈**:
- 每一轮,兔子移动到离它之前位置1个单位远的点。
- 定位设备提供一个点 \( P_n \),该点与兔子的新位置 \( A_n \) 之间的距离至多为1。
- 猎人移动到离她之前位置1个单位远的点。
### 确保距离至多为100
主要问题是猎人是否能在10^9轮之后保持与兔子之间的距离不超过100个单位。
- **距离保持**:
- 如果兔子策略性地移动,它会试图增加与猎人之间的距离。
- 但是,定位设备的反馈允许猎人知道兔子在 \( P_n \) 周围1个单位的范围内。
### 证明策略
为了证明猎人是否能确保在10^9轮之后距离至多为100,我们需要考虑最坏的情况。
1. **距离增加**:
- 如果兔子策略性地移动,它可能会试图增加与猎人之间的距离。
- 然而,定位设备的反馈使猎人可以向 \( P_n \) 移动,以减少与兔子的距离。
2. **猎人的移动**:
- 通过始终向 \( P_n \) 移动,猎人确保她在向兔子可能所在的区域移动。
- 虽然每轮的最大移动距离限制为1个单位,但考虑到大量的轮次,累积的移动必须考虑在内。
### 结论
经过分析,我们可以得出结论:
- **是的**,猎人可以确保在10^9轮之后,她和兔子之间的距离最多是100。这是因为在每一轮中,猎人都可以利用定位设备的反馈向兔子所在的区域移动。尽管兔子是隐形的,并且策略性地移动,定位设备提供了足够的信息,使猎人逐渐减少与兔子的距离,确保在足够多的轮次之后,距离不超过100个单位。
这个结论假设猎人在响应定位设备反馈时进行最优移动,并考虑猎人和兔子的移动规则。
感谢支持呀
@@WenRuidonghua
感谢你带给我的欢乐
🎉🎉🎉
1:03:04 「別看著我,他說的是實話」
作者的詞彙量真是 恐怖如斯 簡直恐怖如斯啊
哈哈哈感谢支持呀
博主可不可以挑战做一季不要用
”恐怖如斯”做对白😂😂
口头禅😂
确实没用恐怖如斯
用的是牛逼、简直牛逼
對
這跟要求蕭凡宇宙那位不要再痛差不多
都不可能
111222333444555666777888999000999888777666555444333222111000999🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉
平均分89,说明起码有一半在89以上呀😂怎么一个90还能暴露?😢
「看見了,他在玩亞索」
33:55 校長的頭很好笑😂😂😂
是有点
恐怖如斯,簡直恐怖如斯阿
我印象深刻的就是這4個字😂
很魔性的一句話,每次看到都很想笑。
想考高分的話,夢裡啥都有😂
此片重点,恐怖如斯简直恐怖如斯啊😂😂😂😂😂😂😂😂😂
喜歡這部視頻
把自己带入一下这爽文,偶尔做做loser消消乐也挺解压的。
本集題目:恐怖如斯
這畫風我竟然看完了,恐怖如斯,真的是恐怖如斯
哈哈感谢支持呀
有女兄弟好棒
可愛的兄弟😂😂😂
默默看完了 簡直恐怖如斯啊…
都有辦法控分了,真的會看不出題目的水準嗎?
可能就跟剛學十內加減數學的跟有基礎的 寫千內加減吧
你的影片都很好看👀♥
感谢支持呀
爽文就一個爽啊~
18:59 是的,无论免子如何移动,猎人总能够适当地选择移动方式,使得在109回合之后,她能够确保和免子之间的距离至多是100。
这是因为在每一轮中,免子只能移动到与上一轮距离为1的位置,而定位设备只能向猎人反馈距离至多为1的点。因此,猎人可以根据定位设备反馈的点和免子的位置来决定自己的移动方式,从而保持与免子的距离不会超过1。
通过这种策略,猎人可以在109轮后,将与免子的距离控制在100以内。
牛呀,推!
你他是系統的?
应该出一套卷子 上面是哥德巴赫猜想 黎曼猜想 等等 结果也得90分😂
應該出一套 一元兩次方程,三角形面積總和,時鐘時間加減,結果也是90分
还会跟新吗?
22:58
好力害😱😱
感谢支持呀
好看啊!😂
上面的是什麼😅
恐怖如斯合集😂😂😂
感谢支持呀
57:47
1:07:06
最後天才死在1+1這題目上!
这梦真好😂
哈哈
1:00:51
別人考得好,是別人有努力,不是天生就很聰明
是啊,努力可以讓人上好大學,但是天生聰明的人,才可能成為頂尖,世界上努力的人這麼多,也沒有幾個愛因斯坦或牛頓這些人
1:43 真厲害
謝謝點讚!
28:02
多发点喜欢看
我是空分狂魔的经典台词(恐怖如斯,简直恐怖如斯啊。)😂
哈哈
我刚看到你这句话,他就说了
這個夢我喜歡
感谢支持呀
考场里的一拳超人😂
哈哈
42:49旁邊那個黃色的是衛生:)?
哈哈
恐怖如斯,簡直恐怖如斯阿
恐怖如斯,簡直恐怖如斯:為什麼!!! 老 是 用 我 ! ! !
38:30
作者可以出小說了
太會做劇情了
只做youtube太埋沒才華了XD
這是別人做的小說
作者只是把他動畫化了
@@saligia1262 原來如此
请问一下有谁知道他说了多少次恐怖如斯吗。。。。
巴拉巴拉的🤣🤣🤣
感谢支持
「恐怖如斯簡直恐怖如斯啊」😂
混沌控分體 就是恐怖如斯嗄 還壓制修為 飛升不久早晚的事
44:20 這反應🤣
恐怖如斯‘簡直恐怖如斯啊
感谢支持呀
這夢也太真實了吧😮
哈哈
42:10 他卓上那是啥
尿
扒拉扒拉扒拉?😂😂😂
有晚整版嗎 這部江南真好看
等等,旁边那个是春梦ma?
❤❤❤❤🎉🎉🎉😊
這個
男人真的不可四思意真的是用1
,0秒寫完的嗎嗎?
以前的學校作弊 老師也不會理
真的是恐怖如斯!我爱说实话
這則影片真的是恐怖如斯
巴拉巴拉巴拉😂😂
哈哈
雯锐你可以给我点赞吗?😢求求你🥺🙏
19:05
To solve this problem, we need to determine if the hunter can always ensure that the distance between herself and the rabbit is at most 100 after 10^9 rounds, regardless of the rabbit's movements and the points provided by the tracking device. Let's break down the problem and analyze the possibilities.
### Key Points to Consider
1. **Rabbit's Movement**:
- The rabbit moves invisibly to a new point \( A_n \) such that the distance between \( A_{n-1} \) and \( A_n \) is exactly 1.
2. **Tracking Device**:
- The device gives a point \( P_n \) such that the distance between \( P_n \) and \( A_n \) is at most 1.
3. **Hunter's Movement**:
- The hunter moves visibly to a new point \( B_n \) such that the distance between \( B_{n-1} \) and \( B_n \) is exactly 1.
### Strategy for the Hunter
The hunter must use the information from the tracking device to reduce the possible area where the rabbit could be. Since the tracking device provides a point \( P_n \) such that \( |P_n - A_n| \leq 1 \), the hunter can use this to her advantage.
### Geometric Interpretation
1. **Initial Condition**:
- Initially, the hunter and the rabbit are at the same point: \( B_0 = A_0 \).
2. **Movement and Feedback**:
- In each round, the rabbit moves to a point 1 unit away from its previous position.
- The tracking device provides a point \( P_n \) within a radius of 1 unit from the rabbit's new position \( A_n \).
- The hunter moves to a point 1 unit away from her previous position.
### Ensuring Distance is at Most 100
The main question is whether the hunter can keep the distance to the rabbit within 100 units after 10^9 rounds.
- **Distance Maintenance**:
- Each round, the hunter moves to reduce the distance to the possible location of the rabbit.
- Given the feedback \( P_n \), the hunter can move towards \( P_n \) to potentially reduce the distance to the rabbit.
### Proof Strategy
To prove whether the hunter can ensure the distance is at most 100 after 10^9 rounds, we need to consider the worst-case scenario.
1. **Distance Increase**:
- If the rabbit moves strategically, it can try to increase the distance from the hunter.
- However, the tracking device feedback allows the hunter to know that the rabbit is within a certain radius from \( P_n \).
2. **Hunter's Movement**:
- By always moving towards \( P_n \), the hunter ensures she is moving towards the region where the rabbit is likely to be.
- The maximum movement is constrained to 1 unit per round, but given the large number of rounds, the cumulative movement must be considered.
### Conclusion
After analyzing the problem, we can conclude:
- **Yes**, the hunter can ensure that the distance between herself and the rabbit is at most 100 after 10^9 rounds. This is because, with each round, the hunter can use the feedback from the tracking device to move towards the rabbit's vicinity. Although the rabbit is invisible and moves strategically, the tracking device provides enough information for the hunter to gradually reduce the distance, ensuring it remains within a certain bound after a sufficiently large number of rounds. The exact geometry and strategic movement would ensure that the distance does not exceed 100 units after 10^9 rounds.
This conclusion assumes optimal movement by the hunter in response to the tracking device's feedback and considering the rules of movement for both the hunter and the rabbit.
既然可以隨心所欲控制戰鬥力,依照各種不同惡劣環境下切換,真是恐怖如斯阿
恐怖如斯😂😂😂
經典台詞[恐怖如斯,簡直恐怖如斯阿!
]
47:32 三金
恐怖如斯,簡直恐怖如斯啊😂😂😂
太恐怖了
吧啦吧啦吧啦😂😂😂😂😂
吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦😊😊😊😂😂😂😮😮😮
吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦😊😊😊😂😂😂😮😮😮
雯锐动画真是恐怖如斯簡直恐怖如斯 直接跟智商下降那篇對上XDD
恐怖如此😱
12:35 🤣🤣🤣🤣把啦把啦把啦!🤣🤣🤣🤣🤣🤣...(._.)
做2,3題,偷看4,5題
謝謝!陪我希望多出片
錢不要給我啊
@@歐卡仔你是乞丐吗?
一個靠系統外掛的作弊仔能被稱為天才/學霸,真是 恐不如斯
銳雯的弟弟:雯銳😏
好家伙,这美梦做的不错。
爽文
跟你的帳號名字一樣😴
系统流
我当年参加奥数考试 我所有题都直接写的答案 没有写解法😢 好像答案全对 但是不写解法 我是脑子有问题 不是故意不写
台灣Sb
18:26
獵人和兔子的那一題因該是i吧
不怕學霸拿滿分,就怕學霸會控分😂
不怕學霸拿滿分,就怕學渣會控0分
😂😂😂😂😂😂😂
2:37
恐怖如斯 簡直恐怖如斯啊~~~
哈哈
為什麼要控分?
低调啦,正所谓“事了拂衣去,深藏功与名”
如果沒有控分😅呢?
單科故意搞低真的會被叫去辦公室XD
可不可以出之前的第二級
誰能打出昶
泰坦監控人¿¿¿ ¡
昶
昶
昶,高中同學剛好有人有這名字。
昶
10:26 《巴拉巴拉巴拉》
上大夜 刷到這視頻 恐怖如斯😂
「恐怖如絲 ,恐怖如絲啊。」
0:53
總結:恐怖如斯
20:2:40
哈哈哈哈哈,真是梦里什么都有