4,500RPM Air Engine

Поделиться
HTML-код
  • Опубликовано: 20 авг 2023
  • The first 100 people to use code STANTON at the link below will get 60% off of Incogni: incogni.com/stanton
    Enjoy my videos? These are made possible due to help from my Patrons. Please consider supporting my efforts: / tomstanton
    ----------------------------------------------------------------------------------------------------------------------------------------
    My Other Equipment:
    Main camera - amzn.to/2vlvlC6
    Main lens - amzn.to/2gMrhru
    Main tripod - amzn.to/2tqRjBt
    Secondary Tripod - amzn.to/2t1NkMh
    Microphone - amzn.to/2uuv9n0
    Audio recorder - amzn.to/2v3mjcG
    Banggood affiliate: www.banggood.com/?p=LT0710618...
    Twitter: / tomstantonyt
    3D Printer filament sponsored by 3D Printz UK: 3dprintz.co.uk/
    ----------------------------------------------------------------------------------------------------------------------------------------
    #engine #3dprinting
  • НаукаНаука

Комментарии • 2,9 тыс.

  • @TomStantonEngineering
    @TomStantonEngineering  9 месяцев назад +77

    The first 100 people to use code STANTON will get 60% off of Incogni: incogni.com/stanton

    • @germaniaempire2829
      @germaniaempire2829 9 месяцев назад

      Have a look at the engine Richard Pearse used in his aircraft

    • @DonariaRegia
      @DonariaRegia 9 месяцев назад

      Question: What about either multiple air tanks or a multi-chambered tank with a system to switch from one chamber to the next as a way to keep a more consistent pressure throughout the run. Either a pressure regulated selector or a timed clockwork style of system to achieve the same result. Higher initial pressure would be required to see any real gain though. I think.

    • @petrifiedhero9610
      @petrifiedhero9610 9 месяцев назад

      ruclips.net/video/fE_LjQ4IBQQ/видео.htmlsi=JYrUbne4WU5eEHE3

    • @petrifiedhero9610
      @petrifiedhero9610 9 месяцев назад

      integza built one with magnets intead of a ball valve

    • @thea.m.p.co.467
      @thea.m.p.co.467 9 месяцев назад

      What about using an *_offset cylinder_* to compare power & efficiency vs a "standard" configuration?

  • @alanhelton
    @alanhelton 9 месяцев назад +6104

    The sound of that twin cylinder was mighty impressive Tom

    • @TheGooEater
      @TheGooEater 9 месяцев назад +145

      That was pleasant sound indeed

    • @jonasplima
      @jonasplima 9 месяцев назад +117

      10:1 is a extremely good engine. That's why it sounds so good.

    • @clementpoon120
      @clementpoon120 9 месяцев назад +254

      he should make a v12 version and build a wwii fighter with it

    • @liam8615
      @liam8615 9 месяцев назад +26

      Sounds like a diesel under load

    • @jonaslind9505
      @jonaslind9505 9 месяцев назад +55

      Like a revving motorcycle.

  • @Nico-9138
    @Nico-9138 9 месяцев назад +1538

    Tom's air engine project has been hands down my favourite home-made science video series to follow on RUclips for years. This thing started as a curious fun project and is slowly turning into a slick usable design

    • @ML_314
      @ML_314 9 месяцев назад +16

      This! :)

    • @Incompetent_Matt
      @Incompetent_Matt 9 месяцев назад +15

      Couldn’t agree more. I can’t begin to describe my excitement of seeing this video in my feed 😂

    • @Alluvian567
      @Alluvian567 9 месяцев назад +7

      For sure. I have loved this entire series. Can't wait until we can see these improvements on a plane or whatever he decides to put them in.

    • @patricioiasielski8816
      @patricioiasielski8816 9 месяцев назад +3

      Agree

    • @james2396
      @james2396 9 месяцев назад +3

      Yeah! I love the determination to see it through to become a viable motor

  • @SamSep01
    @SamSep01 9 месяцев назад +148

    I love the twin cylinder that you built. I want to see you build a 6-cylinder radial engine just for the heck of it. Would sound amazing!

    • @jasmijnariel
      @jasmijnariel 4 часа назад

      Or a 12cil? 2 inline 6cyl 😂

  • @cavemaneca
    @cavemaneca 9 месяцев назад +20

    It's only a matter of time before Tom creates an air powered V6

  • @Phrancini
    @Phrancini 9 месяцев назад +698

    I work in bottle engineering, and part of the test we perform on the samples we make is a burst test. A 300ml bottle for highly carbonated products if well blown, can easily reach up to 15bars before bursting (not that i would reccomend reaching that pressure, as we do it with a proper machine that uses water instead of air). A 1500/2000ml falls a bit short of 12bars.
    Anyway.
    Beware that by making the hole on the bottom of the bottle, you are definitely weakening the overall resistance of the base, i would try to pressurize the bottle by adding another valve to the cap instead.
    Keep up experimenting!

    • @killingtimeitself
      @killingtimeitself 9 месяцев назад +66

      Just for the record in the water rocket community its well known that 120 psi is generally where these 2 liter bottles tend to explode. 100 psi is about the upper safe limit you would want to pressurize, 60 psi is almost entirely safe and 80psi is about the upper end of that. Though these are rough figures they should apply about the same.
      It's also worth noting, its generally not dangerous, just loud, its a little bit of thin plastic, the most it'll manage to do is scare you pretty badly. Unless it sends something flying somehow.

    • @dw7444
      @dw7444 9 месяцев назад +34

      @@killingtimeitself You even try a SodaStream bottle? Not quite as light, but they can handle a LOT more pressure. I've had mine up to 175 psi(12 bar) with no issues... which sort of sucks because I was trying to pop it to scare somebody. I later watched a video from the good folks over at Beyond The Press who had one up around 25 bar(360 psi) before it burst with deformation appearing to occur somewhere near 20 bar(290 psi).

    • @DanielDuhon
      @DanielDuhon 9 месяцев назад

      @@dw7444you could always wrap it in packing tape

    • @killingtimeitself
      @killingtimeitself 9 месяцев назад +14

      @@dw7444 i've seen wrapped and reinforced 2l (carbon fiber and kevlar iirc) that can do upwards of a thousand PSI, if you really wanted to maximize thats probably the way, though im sure that increases weight by a minimum of tenfold.

    • @toolscientist
      @toolscientist 9 месяцев назад +73

      For people that don't like mixed unit conversations:
      15bar = 218psi
      12bar = 174psi
      8.3bar = 120psi
      6.9bar = 100psi
      5.5bar = 80psi
      4.1bar = 60psi
      And for people that haven't seen the metric light yet, 1bar = 1 atmosphere

  • @getnmyoven69
    @getnmyoven69 9 месяцев назад +618

    I can’t believe how much more efficient this design is compared to your first. It’s crazy the innovations you’ve come up with for the problems you encounter, true engineering and design

    • @ichosolemanuel6048
      @ichosolemanuel6048 9 месяцев назад +3

      In every video it gets more efficient I wonder what the final engine will be

    • @xmysef4920
      @xmysef4920 9 месяцев назад +16

      @@ichosolemanuel6048 eventually it will probably just break the law of thermodynamics

    • @LKDesign
      @LKDesign 9 месяцев назад +8

      By the end of the year he's -invented- established personal flight powered by breathing slightly.

    • @nirodper
      @nirodper 9 месяцев назад +5

      these are not innovations, what he's doing was known 200 years ago and anyone who knows gas laws and understands how a heat engine works wouldn't make his mistakes

    • @UncleKennysPlace
      @UncleKennysPlace 9 месяцев назад +1

      @@nirodperAnd that is what makes it fun.

  • @jorgemaralcazar710
    @jorgemaralcazar710 9 месяцев назад +143

    Contrats on the video, the quality of your content is insane. As a mechanical engineering student, I realize the amount of hours you put into every single video is absolutely insane. Keep up the hard work! Well keep supporting!

  • @lewismassie
    @lewismassie 9 месяцев назад +77

    Seeing the huge difference with the last flown design is just insane. Can't believe how far your designs have come

    • @wilsjane
      @wilsjane 9 месяцев назад

      A simpler solution is to have 2 supply tanks, the later (and smaller) at a lower pressure to match the engine.
      This allows the main tank to be connected via the constant pressure valve. The run tank needs to be large enough to absorb the oscillations.
      The main tank can then be refilled on a long duty cycle of the supply compressor, starting just before the 2 tanks equalise and stopping at the max SWL of the main tank
      This system, (called cushioning), is used in high temperature heating systems. It allows the water to be held at a constant high pressure without boiling. The second tank has to be large enough to contain the volume increase of the water due to expansion.
      When the water is in a sealed loop, a primary tank is not always needed.

  • @palmermonsen9098
    @palmermonsen9098 9 месяцев назад +428

    Now make a radial engine version of it with even more cylinders!

    • @AndyFromBeaverton
      @AndyFromBeaverton 9 месяцев назад +50

      A Pratt & Whitney r-4360 wasp

    • @quakxy_dukx
      @quakxy_dukx 9 месяцев назад +12

      Exactly what I was thinking

    • @Rhannmah
      @Rhannmah 9 месяцев назад +14

      But he just told you that the double-cylinder engine is half as efficient as single-cylinder!

    • @BasedMan
      @BasedMan 9 месяцев назад +41

      ​@@Rhannmah MOH POWAH BAYBEE
      Air powered P47!

    • @ShainAndrews
      @ShainAndrews 9 месяцев назад +1

      @@Rhannmah You can bring facts, science, math to ameritards... but never expect them to accept it.

  • @birbo5603
    @birbo5603 9 месяцев назад +353

    I love seeing your creative approaches to optimizing something so small, the redesigns, and all the quasi-microscopic changes that go into yielding a slightly higher efficiency each revision. This is probably one of my favorite series!

  • @syrus3k
    @syrus3k 9 месяцев назад +27

    The 10x performance increase is just incredible. Optimisations like that are game changing. I bet you get approached by model airplane manufacturers and stuff soon if not already

  • @CobraTheSpacePirate
    @CobraTheSpacePirate 9 месяцев назад +3

    I wonder if having the cylinders offset would be a better option than having the curved rods. Traditional aircraft engines as well as BMW motorcycle engines (which I think were actually for aircraft originally) are also built with offset cylinders. With this miniature 3D printed design it might not even make a difference that could be measurable but might make for a good test. With the bore and especially the stroke, the change in curved rods to going with straight rods may show a difference in the torque as well as reduce the friction on the piston walls with the rods parallel to the pistons and cylinder walls and also reduce any air loss due to the pistons riding slightly cockeyed in the cylinders due to the rods being connected to the crankshaft at a small offset distance. Great work, Tom! I really like the content that you present on your channel.

  • @theorangebaron1595
    @theorangebaron1595 9 месяцев назад +396

    Wow, the progression between all of your pneumatic engines is impressive. I love the simplicity of the mechanical feedback loops, they are so clever! Great videos as always Tom.

  • @kalamarko9056
    @kalamarko9056 9 месяцев назад +152

    I absolutely love this series. It is the definition of engineering. Literal years of R&D with many challenges and setbacks, the evolution of tools, equipment and materials used, all to improve design and efficiency. Keep up the great work Tom!

  • @Topcantstop
    @Topcantstop 9 месяцев назад +10

    OH! I just read your bio and realized that you have a degree in aerospace engineering! I'm a highschool student and this series has really really interesting to me and actually kind of inspired me to look into and go after aerospace engineering once I graduate from high school and I didn't even realize that that's exactly the path that you took lol. Thank you for making this series, it's truly an inspiration to me and I would bet many many others as well.

  • @arthurjacobus800
    @arthurjacobus800 9 месяцев назад +2

    It’s been really fun to watch the progression of the engines. Keep up the good work, and the content coming.

  • @henkeH2
    @henkeH2 9 месяцев назад +342

    The amount of work behind these projects is simply amazing. Well done!

  • @athmaid
    @athmaid 9 месяцев назад +361

    Your animations are really helpful and high quality, I wish more DIY orientated engineering channels had them

    • @HaloNeInTheDark27
      @HaloNeInTheDark27 9 месяцев назад

      High quality animations?

    • @Simigema
      @Simigema 9 месяцев назад +1

      I farted

    • @stutterpunk9573
      @stutterpunk9573 9 месяцев назад

      Yeah the whole thing was cgi, I'm glad it's still watchable. Tom def has a good team

    • @InternetUser-lj7um
      @InternetUser-lj7um 9 месяцев назад

      @@HaloNeInTheDark27 yeah @ 1:11
      @Bctran02 nice

  • @recumbentrocks2929
    @recumbentrocks2929 9 месяцев назад

    Brilliant video Tom, love your easy to understand commentry and animation. Can't wait to see where you fit this.

  • @OMGWEEEE
    @OMGWEEEE 9 месяцев назад +1

    That air powered mini 1/2 VW is beautiful! Quite keeping to tradition of the home built aircraft and sounded stunning. When you pushed the air up and let it go, I was in awe. Keep it up!

  • @thesoupin8or673
    @thesoupin8or673 9 месяцев назад +281

    This was so incredibly cool. I love the graphs, the animations, the slow-mo, and the mechanical nature of your projects. I can't wait to see what comes next! This air piston series has been incredibly fun to watch so far.

  • @michaelbuckers
    @michaelbuckers 9 месяцев назад +119

    5:45 you can make it so that TDC actually corresponds to high crank leverage angle by offsetting the cylinder from the crankshaft. Also do note that you can't really expand to atmospheric pressure because then exhaust would not occur. With a bottom discharge port design, the piston compresses the air on its way up, so higher expansion volume just means there's less intake resistance so bigger charge of air can enter. It makes it more powerful, not more efficient.

    • @alexpym8216
      @alexpym8216 9 месяцев назад +6

      Offset crankshaft is a good idea👍

    • @rancidmarshmallow4468
      @rancidmarshmallow4468 9 месяцев назад +10

      his seal design means there is little to no compression on the upwards stroke, though. exhaust at atmospheric pressure is done by the piston pushing the air down around it's sides and out as it moves upwards.

    • @ericmeyer6155
      @ericmeyer6155 9 месяцев назад +4

      Agreed on cylinder bore offset - came here to suggest that very idea.

    • @SoundsLikeOdie
      @SoundsLikeOdie 9 месяцев назад +3

      I came here to suggest the offset crankshaft too.
      They used that trick in the 50s to cheat on car racing.

    • @DigtoDef
      @DigtoDef 9 месяцев назад +3

      Isn't that called a desaxe engine?

  • @malloot9224
    @malloot9224 9 месяцев назад +4

    You totally hit this one out of the park Tom, been following you for years and this series is an instant watch. The sound of the boxer air engine was insane and ik sure you can manage increase the efficiency of the single piston more. Would love to know the theoretical limit of it to compare as well!

  • @mosheswisa
    @mosheswisa 9 месяцев назад

    I enjoy watching the progression of this long-going project so much! Thanks for another great video.

  • @xmysef4920
    @xmysef4920 9 месяцев назад +429

    We sure have come far in the compressed air engine technology!

    • @Guenther-Eichinger
      @Guenther-Eichinger 9 месяцев назад +40

      Pumping up you car before going to work 😂😂

    • @xmysef4920
      @xmysef4920 9 месяцев назад +7

      @@Guenther-Eichinger Lol!

    • @ShainAndrews
      @ShainAndrews 9 месяцев назад

      We? Please explain to the world your contribution.

    • @brandonmack111
      @brandonmack111 9 месяцев назад +12

      ​@@Guenther-Eichingerinterestingly, that's not as crazy as it sounds. There are actual prototypes for air-powered cars that get similar efficiency to electric vehicles, and would potentially be cheaper and easier to build (not to mention much more encouragement friendly than lithium batteries)... One day you might actually see pneumatic cars on the road 😁

    • @5peciesunkn0wn
      @5peciesunkn0wn 9 месяцев назад +12

      @@ShainAndrews"we" as in the general sense.

  • @KegRocket
    @KegRocket 9 месяцев назад +86

    Absolutely tickled by the extremely elegant pneumatic manifolding and mechanical design going on here! One of the best explanations online about how a regulator works too. Great work!

    • @CardZed
      @CardZed 9 месяцев назад +1

      Maybe after the Kegrocket is ready you could make an air powered Kegdrone 😛

  • @mylittleparody2277
    @mylittleparody2277 9 месяцев назад

    As always, super cool!
    Thank you for sharing

  • @protonenfalter
    @protonenfalter 9 месяцев назад +93

    Here is another point to increase your efficiency significantly: make the exhaust air leave the cylinder all the way up to the TDC.
    The reason your version with larger air volume was less efficient is because at the point where the exhaust openings were actually working the air pressure dropped to about ambient pressure so only little air could escape. Thus most of the air got compressed again by the piston going up, eating up all the energy gained on the way down.
    Of course this needs a timed valve (think combustion engine), which is a challenge on its own...😁

    • @xmysef4920
      @xmysef4920 9 месяцев назад +2

      Perhaps a small extra checkvalve? So it opens as soon as there isn’t an excess in pressure

    • @protonenfalter
      @protonenfalter 9 месяцев назад +7

      @@xmysef4920 There needs to be an excess in pressure, though. Otherwise the air won't get pushed out.
      I think the valve needs to controlled by the position of the piston: it needs to open when the piston is at the lowest position up until the piston reaches the highest point.

    • @toolscientist
      @toolscientist 9 месяцев назад

      Maybe a spring loaded valve in the piston head? Valve is open up to ~1.5bar, but closes at higher pressures. Might be hard to do at such small scales.

    • @derschwartzadder
      @derschwartzadder 9 месяцев назад +6

      @@toolscientist cam shaft, my dude. Making it save more energy than it steals is the trick.

    • @Scrumdog
      @Scrumdog 9 месяцев назад +7

      The engine already does this, you need to check his earlier videos. The rubber o-ring on the top of the piston deforms to seal the cylinder as the pressure increases on air inlet, and then returns to its original shape as the pressure decreases at the bottom of the stroke, so air can move around the piston as it moves up the cylinder, it isn't sealed during this part of the cycle. There is no compression on the upward stroke. Y'all are coming up with solutions to a problem that this design doesn't have.

  • @joshuahstedman9346
    @joshuahstedman9346 9 месяцев назад +103

    Tom, you could improve efficiency even more by keeping the head design with no upper expansion area like you have now; and simply increasing the stroke volume to the point in which the expansion ratio is sufficient to your liking & DOESN'T have that high pressure delta when it goes to exhaust from the ports. And also finding a way to ensure that there is no compression stroke, only expansion, like a Miller-cycle on steroids. Not to mention the extra crank leverage you would receive with the stroke increase, would allow a larger, slower prop, etc.
    Please upvote this so Tom might see it, I am 100% sure I am correct about what I'm saying. Thanks.

    • @Hootie811
      @Hootie811 9 месяцев назад +3

      I think the exhaust is the issue with the engine as you point out, there is a big compression stroke! if the expansion happens and the air in the cylinder is at 1atm at BDC then no air is going to leave the exhaust port, as the piston starts moving up there will be a tiny bit escape before the ports get covered but most of the air gets re-compressed and wastes most of the energy. the exhaust port should be in the piston and opened by the crank shaft, when the piston gets to the top it should close.

    • @robertbackhaus8911
      @robertbackhaus8911 9 месяцев назад +7

      @@Hootie811 I think he is avoiding a compression stroke by having seals that don't work without pressure. When the valve opens and high pressure air flows in, the seal is pressed outwards against the cylinder walls. Then when the pressure is released, the seal springs back away from the wall, allowing the air to move past as the cylinder moves back up.

    • @moneyshifters
      @moneyshifters 9 месяцев назад

      @@robertbackhaus8911 That's a neat design. Its funny how many actual engine concepts he manages to cover (by accident or not) just by developing these. I was wondering if he was going to try and implement some scavenging though I wouldn't see it being effective at all.

    • @travelbugse2829
      @travelbugse2829 9 месяцев назад +1

      I was wondering whether higher engine rpm, from using a shorter stroke/bigger piston and a geared-down prop, would help efficiency. But I'm way over my head in the science!

    • @xmysef4920
      @xmysef4920 9 месяцев назад

      @@robertbackhaus8911 I have also been thinking and testing of another way of doing this. You use a tilting piston that would seal just a slight bit before the valve opens, and the friction would also be *very* low, since the absolute only contact area that the piston has over the whole cylinder is just the seal, and that contact area is even less when it tilts. You would also reduce the amount of moving parts doing that aswell

  • @LordRamachandran
    @LordRamachandran 9 месяцев назад

    Your teaching abilities are amazing. It is so cool how you manage to take me along with your way of thinking!

  • @temp_uura
    @temp_uura 9 месяцев назад

    I was waiting for this video for a while!! Great content and skills!! Much love from Portugal

  • @enterusernamehere9679
    @enterusernamehere9679 9 месяцев назад +84

    my man out here reinventing the diesel engine

    • @nednelp9051
      @nednelp9051 9 месяцев назад

      Huh?

    • @ericlotze7724
      @ericlotze7724 9 месяцев назад +4

      Not really, although CNC Milling a DIY One would be AMAZING
      *open source mini diesel when*

  • @andyprice4696
    @andyprice4696 9 месяцев назад +20

    What you see with the higher pressure and lower output is well known to pcp air rifle users as valve lock. There comes a point where the pressure in the tank is too high for the “hammer” or opening device to open the valve freely. From the looks of your graph, I think 85 psi may be the sweet spot

    • @recoilrob324
      @recoilrob324 9 месяцев назад +11

      Right....much of the physics going on here are well known in the PCP community and surprisingly flat power curves can be achieved with a well tuned gun. It would also be beneficial for the air engine to use a two stage design much like the steam engines on ships where a 'Hi-pressure' cylinder then exhausts into a 'Lo-pressure' cylinder that's sized proportionally to efficiently use the lower input pressure. Steam has a much higher expansion ratio than compressed air so the benefits would be much less....still it seems wasteful to exhaust ANY pressure when the onboard supply is so limited. Entertaining experiments with the air engines Tom!

    • @vitsalava1251
      @vitsalava1251 9 месяцев назад +5

      ​@@recoilrob324Or give it an exhaust manifold to get tome scavenging going, essentially create less than atmospheric pressure in the cylinder before the exhaust closes. Very much doable with flexible airhose on the twin cylinder. Might be interesting

  • @marshpw
    @marshpw 9 месяцев назад +1

    one of the best series on youtube. so cool to see different iterations of this design, and how it improves!

  • @snsebrief
    @snsebrief 2 дня назад

    Amazing video. Thank you for showing complex engineering, thermodynamics and manufacturing ... Visual!

  • @nikshmytov6561
    @nikshmytov6561 9 месяцев назад +60

    Tom, never stop making videos! They're so much fun to watch and see you overcome challenges through analyzing little details that add to efficiency

  • @therhodesy
    @therhodesy 9 месяцев назад +60

    It’s great when you release a new video on your air engines, it’s been really wonderful seeing the progress you’ve made over the years on this… great work Tom!

  • @kushith
    @kushith 9 месяцев назад

    I’ve been following the evolution of this for a while. This is impressive progress!

  • @andresmonagas7662
    @andresmonagas7662 9 месяцев назад +3

    You do such a good work that it looks easy. I cant imagine the amount of time you have put into this amazing high quality content.

  • @DoReid0
    @DoReid0 9 месяцев назад +88

    Tom, I am beyond impressed. I'm very proud of you and your resilience to the strange issues that came up, and am so glad that after each time you were seeking an answer or improvement and found it, every single time. You have to be one of my favorite RUclipsrs and I love watching you and the things you create. Seriously, great job. Keep up the good work, and have fun designing the airplane for this badass engine!

    • @jazz1on
      @jazz1on 9 месяцев назад

      Couldn't agree more - Great work Tom.

  • @lephtovermeet
    @lephtovermeet 9 месяцев назад +233

    I absolutely love this series. You're doing God's work. I bet you've single handedly inspired dozens of not hundreds of future mechanical and aerospace engineers.

    • @MehreKat
      @MehreKat 9 месяцев назад +2

      Can confirm.

    • @ghostwhite1648
      @ghostwhite1648 9 месяцев назад

      Too bad compressed air already fuels commercial airplanes, but you’re not supposed to know that

    • @taylorwestmore4664
      @taylorwestmore4664 9 месяцев назад +7

      ​@@ghostwhite1648This is false. You're referencing a meme called the "jet fuel hoax" which purports that jet engines use fuel to start an air compressor which then somehow produces the required power to continue running without fuel. Another variation of this meme says that 90% of the input of the engine is compressed air while only 10% is fuel.
      In fact this is a misinterpretation of the way that fuel/air mixture works. Combustion of kerosene in air is limited by the Oxygen content of Air, which is 20% O2 and 78% Nitrogen. By volume, only about 10% jet kerosene can be used before all the Oxygen is used up. The combustion heats the air which causes it to expand, which then drives the turbomachinery to compress more fresh air into the engine, this compressed air is then burned with fuel to repeat the cycle. So no, compressed air is not where the energy is coming from, it's where the energy from combustion is converted from chemical energy to heat energy and finally mechanical energy of expansion.
      Now let me blow your mind!
      This meme is ALSO a misrepresentation of the work of Viktor Schauberger, the Austrian scientist responsible for early experiments in vortex fluid dynamics. Viktor Schauberger discovered a mechanism to use hot, humid air and a cold sink, usually a cold water tank or body of water like a river, to rapidly compress ambient air to drive a turbine. This is using the opposite process of implosion rather than explosion used in combustion engines. Implosive engines still require a heat difference or humidity difference to operate because only systems that are not in thermodynamic equilibrium can perform mechanical work. The "repulsine" was Viktor's name for this type of cold implosion engine, and he was conscripted by Nazi Germany to construct prototypes for the Nazi war machine. It's unknown how successful this project was, but the principle behind the design is sound, as long as there is a cold reservoir sink available to dump the exhausted, condensed air. Without that temperature difference there is no source of energy to perform the mechanical work of compressing the air.

    • @ghostwhite1648
      @ghostwhite1648 9 месяцев назад

      @@taylorwestmore4664 TLDR a YTer made a compressed air engine. We know the military is 25-100 years ahead of what we are given.

    • @ghostwhite1648
      @ghostwhite1648 9 месяцев назад

      @@taylorwestmore4664 UFOs aren't real still too right? And the water in flint didn't have lead?

  • @LILWagonBurner
    @LILWagonBurner 9 месяцев назад +1

    Hey Tom, I find this to be your most impressive project yet great work

  • @SolidBlueBlocks
    @SolidBlueBlocks 9 месяцев назад

    That is simply amazing. The best engineering-related project on RUclips. And I bet you can optimize this thing to double it's current efficiency again! There is so much that can still be improved, in a positive way.

  • @MrJuan-lf7lk
    @MrJuan-lf7lk 9 месяцев назад +48

    it’s so weird yet amazing to have watched your videos for almost 6 years now and be able to watch as you spread your wings and share your creativity and intelligence with the world. you inspire an unimaginable amount of people with your videos and it’s absolutely beautiful to see your community grow! it’s you and a handful of other youtubers that are guiding the next generations into the world of engineering. thank you tom stanton for the amazing videos!

  • @herosvicentegonzalez7872
    @herosvicentegonzalez7872 9 месяцев назад +72

    Man, i love this series.
    Could you try to push the engines (even the old ones) to the breaking point?
    Does it give insight into the engines? No.
    Would it be cool? Yes.

    • @BasedMan
      @BasedMan 9 месяцев назад +7

      It would allow to find the breaking point of the engines, and possibly make them more reliable and durable at those higher pressures.

    • @vedritmathias9193
      @vedritmathias9193 9 месяцев назад +3

      @@BasedMan There's a lot to be learned when something fails. Something about, fail in every way possible in each iteration to improve the fastest.

    • @MatteoLorandi
      @MatteoLorandi 9 месяцев назад +1

      I mean, it would definitely help define the upper boundary of the working pressure

  • @BuceGar
    @BuceGar 8 месяцев назад

    Great work! Very impressive. I really like your diagrams explaining the mechanical theory behind it.

  • @NickInTimeFilms
    @NickInTimeFilms 9 месяцев назад

    Man, oh man, the sound of that 2cyl engine at the end was plucking at my heart strings, it sounds fantastic! Makes me want to build a desktop version just play with the throttle!

  • @Geert2682
    @Geert2682 9 месяцев назад +10

    You could consider prototyping a version with an offset crankshaft. Like you showed at 6:28, you'd get a more favourable crank angle to make better use of the high pressure air. This would approximate an Atkinson-like cycle, except unlike a combustion engine compression losses aren't a thing.

    • @xmysef4920
      @xmysef4920 9 месяцев назад

      Yes I thought of this exact thing too. He should definitely try that

  • @riperchetobg
    @riperchetobg 9 месяцев назад +37

    What an honor to be following the development of this. Really impressive Tom

  • @almosthuman4457
    @almosthuman4457 9 месяцев назад +1

    Thank you for making interesting stress free content. Perfect for jump starting my brain this morning. I appreciate the effort you put into making videos for us.

  • @MrRexquando
    @MrRexquando 9 месяцев назад

    Love your videos and your passion for the exploration process! Couple things: 1. Have you looked at the "OK" co2 engines. Seems to be what you are going for with higher pressure expansion engine vs vane compressed air engine. They were super light and efficient. 2. The 2 cylinder would be better with the engine case/cylinders offset as you lose a bunch of torque with the bent rods. One cylinder behind the other about 1/2 a bore. 3. Try upping the pressure with 2 cylinders of different size and pressure. Exhaust the smaller high-pressure cylinder into the larger lower pressure cylinder. This is how large compressors get more efficient. You may find a way to do this in the same cylinder (like a steam engine). Can't wait to see the next iteration and thank you for the dedication you have to really explore the concepts.

  • @Haarschmuckfachgeschafttadpole
    @Haarschmuckfachgeschafttadpole 9 месяцев назад +34

    I just got a 3d printer and have been printing for the last month party due to your videos. It's so much fun. I've even started designing my own models as well. Thanks Tom.

  • @lolstrup
    @lolstrup 9 месяцев назад +8

    A 10:1 thrust-to-weight ratio is pretty incredible. It would be cool to have remote controlled throttle on this as well!

  • @alenpln
    @alenpln 9 месяцев назад

    As always, pleasure to watch and heaps to learn from it

  • @stm32user
    @stm32user 9 месяцев назад

    Super Tom. Great effort and R&D.

  • @polypetalous
    @polypetalous 9 месяцев назад +9

    Have loved this series from the start… kinda hope you never stop improving this. Fantastic effort and engineering!

  • @niklaskoskinen123
    @niklaskoskinen123 9 месяцев назад +3

    The pressure difference across a regulator is lost energy, so even if it was as efficient at lower RPM, you'd have less work done at the end.

    • @charleslambert3368
      @charleslambert3368 9 месяцев назад

      Yeah if it's dropping the pressure from 60 to 30 then that's half your energy gone. (or maybe only a 3rd. pneumatics is more complicated than hydraulics because it compresses)

    • @niklaskoskinen123
      @niklaskoskinen123 9 месяцев назад

      ​@@charleslambert3368true. I think it goes through adiabatic expansion, so the gas will be slightly cooler at the other side, so it won't quite expand as much as it will lose pressure. So power (= flow x pressure) will be decreased. Unless of course you reheat the gas after it has expanded.

  • @michaksiazek4424
    @michaksiazek4424 6 дней назад

    I am no mechanical enginner but the issue you where discussing with the crank angle reducing torque and therefore making the engine less efficient is often solved by offesting the crankshaft to one side meaning at top dead centre the piston has a tiny crank angle in this case when the pressurised air is injected.

  • @ASeeling
    @ASeeling 9 месяцев назад

    This is a triumph of rc aviation and 3d printing, seriously impressed!

  • @jordanovandoro
    @jordanovandoro 9 месяцев назад +3

    This is absolutely awesome! So cool! It’s amazing to have seen the progression of your design to become something so sleek and efficient! Excellent work!

  • @dronow6457
    @dronow6457 9 месяцев назад

    I love how you explain things very easy to understand keep it up

  • @janikhen7736
    @janikhen7736 9 месяцев назад +4

    love the series, always gets me motivated to also try some air engine designs. For me with boxer engines having the connectingrods offset induced a lot of friction because of them wanting to spread and jamm. So offsetting the cylinders instead helped a lot although I always used a plastic crank and not even a circular one which probably amplifies the problem.

  • @segue2ant395
    @segue2ant395 9 месяцев назад

    Eugh - I love these air-engine videos so much but this one was GREAT. The noise of that two-cylinder was incredible, and the THRUST! Holy heck! I'm not a particularly emotive person, but I was babbling and whooping with excitement watching this, for some reason. Great video, amazing engines, well done this chap. Gold star. Made my week, if not my month.

  • @emilianofiorenza8764
    @emilianofiorenza8764 4 месяца назад

    A truly incredible engineering work, very precise in the analyses, my warmest compliments!

  • @user-yo1qk3tj6l
    @user-yo1qk3tj6l 9 месяцев назад +3

    I absolutely love this series!! So impressed by the progress!. We sure have come far in the compressed air engine technology!.

  • @qodeshgraphics
    @qodeshgraphics 9 месяцев назад +5

    Your inlet valve operation working with a pin on the piston head is absolutely brilliant.

  • @ElectricNed
    @ElectricNed 9 месяцев назад

    You're a talented engineer and have such skill in explaining things from principle.

  • @rickster58
    @rickster58 5 месяцев назад

    Very clever design. The quality of your prints is very nice too. I'm building/designing and printing a 1/4scale 51 Chevy Pickup truck. You've inspired me to consider converting the inline 6 cylinder engine to run on air.

  • @hai6978
    @hai6978 9 месяцев назад +4

    Oh god now you have to make a radial air engine. I bet it will sound heavenly. Astounding work as always Tom!

    • @PrograError
      @PrograError 9 месяцев назад

      I wonder is a Radial engine more efficient than a conventional V Engine (If not wrong, Radial engine pretty much not used anymore after WW1, with the usage only being for legacy designs)

  • @Blockrocko
    @Blockrocko 9 месяцев назад +33

    I think you scrapped the larger expansion version a little too early. I'd come back to it and play around with cylinder offset, so the connecting rod is already past TDC when the air impulse comes in. I sure would like to see the results of that!

    • @danl6634
      @danl6634 9 месяцев назад +11

      See: triple expansion steam engine. All ya gotta do is get the piston diameters matched to the previous stages exit air pressure & the efficiency goes way up.

    • @manitoba-op4jx
      @manitoba-op4jx 9 месяцев назад

      doule expansion engine when?

  • @squorsh
    @squorsh 8 месяцев назад +1

    I was showing one of my friends this channel in my engineering class, and the professor overheard and came over and said he was a fan of the channel too. So congratulations on making content so good that teachers of the subject watch it for fun

  • @GeorgeJFW
    @GeorgeJFW 9 месяцев назад

    I love this series please keep them coming

  • @keganatchison3949
    @keganatchison3949 9 месяцев назад +5

    This is such a cool project Tom! I had an Free flight air hog plane as a kid that had a pneumatic motor. Always thought it would be cool if you could make it R/C. Keep up the great work!

  • @buildingwithlogan
    @buildingwithlogan 9 месяцев назад +7

    I love this series! Makes me want to try making my own 3d printed air engines.

  • @LucasCollino
    @LucasCollino 9 месяцев назад

    Keep up the good work! Amazing channel!

  • @kanaefukuda1864
    @kanaefukuda1864 9 месяцев назад

    the sound of the engine is magnificent. great work!

  • @Everito_TheBurrito
    @Everito_TheBurrito 9 месяцев назад +6

    I think a v8 engine would be very cool to see, you could also experiment with flatplane and crossplane crankshaft designs!

    • @luukvanoijen7082
      @luukvanoijen7082 9 месяцев назад

      id also love to see some more common engine designs to be replicated, like an inline 4 (or inline 5 because its cool) or a v6. would be super super cool to hear what it sounds like

    • @Everito_TheBurrito
      @Everito_TheBurrito 9 месяцев назад

      @@luukvanoijen7082 inline 5 would be awesome

  • @MMKnight_1
    @MMKnight_1 9 месяцев назад +6

    Awesome seeing an air engine again from you! Your videos on them are very interesting and are relaxing to watch. I also think you should try to make an opposed piston engine (where the pistons meet in one cylinder) because they're really cool and crazy efficient.

    • @g.j.647
      @g.j.647 9 месяцев назад

      But I suspect, that the gears (especially when home made) that are necessary to combine the two crancshafts of an opposed piston engine will "eat" any additional efficiency. 😲
      But it would be good fun. And to push it to the top, why not building a "Deltic" air motor?

    • @MMKnight_1
      @MMKnight_1 9 месяцев назад

      YEAH!@@g.j.647

  • @PaulRubino
    @PaulRubino 9 месяцев назад

    I don't know why this video showed up in my suggestions but *I LOVED IT* !
    Fascinating stuff!

  • @genkikiwi8240
    @genkikiwi8240 9 месяцев назад

    Gobsmacked! Thank you Tom Stanton for a quarter hour of quality edutainment. Engineering, R&D and persistence shown on video brilliantly.
    (*thanks also to Incogni for helping out)

  • @davegriffiths
    @davegriffiths 9 месяцев назад +17

    Fascinating Tom! Always worth the wait, your videos. Looking forward to seeing it on an aircraft - fuel much cheaper than the wallet-emptiers I fly! 😀

    • @Keberal_kano
      @Keberal_kano 9 месяцев назад +3

      How did you reply 1h ago when the video was posted a minutes ago

    • @REAPER-ni7nz
      @REAPER-ni7nz 9 месяцев назад

      Thats a damn good question

    • @dmartinr41
      @dmartinr41 9 месяцев назад

      ​@@Keberal_kanobro broke the fucking matrix, proof that we live in a simulation

    • @jo3ywils0n39
      @jo3ywils0n39 9 месяцев назад +1

      @@Keberal_kano Patreons probably get early access to an unlisted video

    • @Thehingeofadoor
      @Thehingeofadoor 9 месяцев назад +1

      @@Keberal_kano He probably had early access through Patreon

  • @Xiaomila
    @Xiaomila 9 месяцев назад +4

    Great series! Keep going for that topic i love it!

  • @crazycjk
    @crazycjk 9 месяцев назад

    I absolutely love these videos and despite having no engineering knowledge, my brain can still keep up due to how it's explained. Thanks Tom - also the difference in sound is very cool... Maybe just for fun you could try a 4cyl/inline 6/V6 one day!

  • @spplS.
    @spplS. 9 месяцев назад +1

    8:57 I laughed when I heard this. Back when I was 15 I experimented with car valves. I stuck one through the bottom of a returnable pet bottle, and with safety glasses on, just pumped it up till it burst. (Its just PET, it won't shatter like a grenade lol) Turns out it expands at 16!!!bar (232psi) and then just slowly looses air through some cracks. The idea of him being excited at 4bar, and looking scared at 7bar is therefore really entertaining for me.

    • @TomStantonEngineering
      @TomStantonEngineering  9 месяцев назад +1

      Wow that's a lot of pressure! I've had one explode within arms reach of my face at just 8.5bar (123psi) and my ear was ringing for 3 days. So that's why I'm cautious now.

    • @xmysef4920
      @xmysef4920 9 месяцев назад

      @@TomStantonEngineering Was that a PET bottle too or?

    • @spplS.
      @spplS. 9 месяцев назад

      @@TomStantonEngineering there are water rocket contests with air tanks going up to 1000psi, using carbon composite tanks. Have you ever thought of something like this? A high pressure engine would really be the next level of engineering.

  • @i_dont_know_anymore223
    @i_dont_know_anymore223 9 месяцев назад +5

    Woah pls make a v8 next or radial maybe?

    • @jelmhoud
      @jelmhoud 9 месяцев назад +1

      Oh man a radial would be awesome!

  • @epic1908
    @epic1908 9 месяцев назад +5

    Babe wake up Tom Stanton posted

  • @caveboy9988
    @caveboy9988 9 месяцев назад

    Another amazingly good video. I learnt so much in such a short amount of time compared to how long it probably took to make.

  • @gerbil7771
    @gerbil7771 9 месяцев назад

    It sounds like a 2 stroke motor which is really awesome. Your design acts very similar to one as well with a reed valve for air intake and using ports on the side of the cylinder to exhaust.

  • @schitcrafter3641
    @schitcrafter3641 9 месяцев назад +3

    I really want to hear this with more engine configurations, would be awesome to see it as a V2/inline twin or something

  • @ET_AYY_LMAO
    @ET_AYY_LMAO 9 месяцев назад +8

    Hi Tom! I was wondering if you could run these engines of a 12g CO cartridge?

    • @neovo903
      @neovo903 9 месяцев назад +1

      Well, a CO2 cartridge is about 800-900 psi. Considering Tom is running 100 psi, that's quite a jump.

    • @ET_AYY_LMAO
      @ET_AYY_LMAO 9 месяцев назад

      I actually dont think it would be so. First of all you usually only puncture a small hole on such a canister, so even though it may very well be 800 PSI internally, the operating pressure of the engine would never effectively reach that unless completely stalled.
      Also as CO2 is released from such a capsule, it is cooled and the vapor pressure drops. There used to be RC engines that ran on CO2. Of course valve spring etc maybe have to be adjusted, but structurally I think it can handle it no problem depending on what polymer you print with etc.

    • @neovo903
      @neovo903 9 месяцев назад +1

      @@ET_AYY_LMAO Well 800psi in a volume of 14cc, at 100psi it has a volume of 112cc. That's 112ml, Tom is using 2,000L bottles at 100psi.
      Even at 60psi it's 186ml of volume.

  • @forrestberg591
    @forrestberg591 9 месяцев назад

    Just awesome. Press mk3 has impressive precision for its price. I might get the mk4 soon

  • @tabdougherty8549
    @tabdougherty8549 9 месяцев назад

    Great stuff! I loved it.

  • @user-yq7lk1hz3n
    @user-yq7lk1hz3n 9 месяцев назад +7

    The sound of that twin cylinder was mighty impressive Tom. The amount of work behind these projects is simply amazing. Well done!.

  • @xXRedTheDragonXx
    @xXRedTheDragonXx 9 месяцев назад +13

    This whole Pneumatic Engine series has been fantastic from start to finish and I feel like at this rate, you're going to come up with some inline 4 design that uses air-injection and electronic control to get the maximum possible efficiency!! I cannot wait to see where this goes, as this is super exciting work!!

  • @LazyAndrew
    @LazyAndrew 9 месяцев назад

    The wait time between each of your videos are so damn worth it

  • @IronGoober
    @IronGoober 9 месяцев назад

    Definitely one of my favorite series on RUclips.

  • @iovideo97
    @iovideo97 9 месяцев назад +3

    I would LOVE to see (and hear) a multi cylinder design dragster, and it would also be quite interesting to see how increasing the cylinder number affect power, efficiency and cool factor 😬

  • @suryakamalnd9888
    @suryakamalnd9888 9 месяцев назад +3

    Amazing video bro!! You are one of the best.. although I lack this craftsmanship, I believe I can develop it.. overtime.. and become like you one day..

  • @initialb123
    @initialb123 9 месяцев назад

    woah, nice ! What a way this project has come , can't wait for the next installment :)