Can you find area of the blue Quadrilateral? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 8

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад

    Puntos notables en el perímetro del cuadrado: A, F, B, C, D y E. Diagonales del cuadrado: (B, G, O, K, D) y (A, M,O,C). Paralela a BD: (F, M, E) → Ángulos de los triángulos interiores: EDC=FBC→75º/90º/15º ; EAF→45º/90º/45º ; EFC→60º/60º/60º→ EFC es triángulo equilátero de lado "a" y altura =MC=h→ KGC es semejante al anterior de lado "b" y altura =OC=k →→→
    AC=10√2 → Si FE=a→ FM=ME=AM=a/2→ MC=h=10√2-(a/2) = a√3/2→ a=10(√6-√2)=10,35276...→ h=a√3/2=5√3(√6-√2)=8,96575... →→ OC=k=10√2/2=5√2 →→ Razón de semejanza entre los dos triángulos equiláteros =s =k/h=(3+√3)6 → Razón entre sus áreas =s² =(2+√3)/6 → Razón entre el área azul EFGK y el triángulo EFC =1-s² =(4-√3)/6=0,37799... →→→ Área azul EFGK =(a*h/2)*(1-s²) =(550-300√3)/√3=17,54264...m².
    Interesante problema. Gracias y un saludo cordial.

  • @juanalfaro7522
    @juanalfaro7522 2 месяца назад +1

    I obtained the same answer as 100(11/6*√3) - 300 = 17.5426 m^2. I did this by noting that the top and bottom right triangles are equilateral: Let AB be AEB and AD be AFG where EF is the outer side of the blue area. EA=AF since both sides suspended by 45 angles, and AB=AD --> BE=DF --> tan (15) = tan (p) --> p=15. Then CF=CE and ECF = 90-2*15=60 --> CEF is an equilateral triangle with all sides equal to 10/cos (15) = 10(√6-√2). Then the diagonal BD be represented by BGHD where GH is the inner side of the blue area. Then BG/sin (75) = BE/sin (60) -> BG = 10 * tan (15) * sin (75) / sin (60) = 10*sin (15) / sin (60) = 10 * [(√6-√2)/4 * 2√3/3) = 10 * (3√2-√6)/6 = DH --> GH = AD - 2*BG = 10√2 - 10(3√2-√6)/3 = 10√6/3. Then [EGHF] = [CEF] - [CGH]. Now [CEF] = √3/4* EF^2 = [10(√6-√2)] ^2 * √3/4 = 100(8-4√3) * √3/4 = 100(2√3 - 3) and [CGH] = [10√6/3] ^2 * √3/4 = 100*6/9*√3/4 = 100√3/6 --> [EGHF] = 100(2√3 - √3/6 - 3) = 100(11/6*√3) - 300 (go to beginning)

  • @jimlocke9320
    @jimlocke9320 2 месяца назад

    The side length of the large equilateral triangle is equal to the length of the hypotenuse of a 15°-75°-90° right triangle. The ratio of sides, short, long, hypotenuse for this triangle is (√3 - 1):(√3 + 1):2√2, so the side length is 20√2/(√3 + 1). Multiply numerator and denominator by (√3 - 1) and simplify to get the form in the video: (10√2)(√3 - 1). The square's diagonal has length 10√2. The height of the small equilateral triangle, when a side is considered the base, is half the length of the square's diagonal, or (1/2)(10√2) = 5√2. To find the side length, multiply the height by 2/(√3): (5√2)(2)/(√3). Multiply numerator and denominator by √3 and simplify to get the form in the video: (10√6)/3. These are the side lengths that Math and Engineering found. Proceed to compute the area as done in the video.

  • @LJSheffRBLX
    @LJSheffRBLX 2 месяца назад +1

    Math and Engineering, cool video it was really entertaining

  • @STEAMerBear
    @STEAMerBear 2 месяца назад +1

    I solved this on my phone’s calculator app but I didn’t use your exact steps. I found the area of the half square to be 50. Then I found the height of the segment from the corner to the parallel lines to be 10tan15°≈2.679492. Finally I solved for the two small triangle areas (sum is 5.662433). So the blue area is 50-26.794919-5.662433
    ≈ 17.542648

    • @MathandEngineering
      @MathandEngineering  2 месяца назад +1

      Wow sir, this is perfect. If you simplify 50√3(11-6√3)/3 it's 17.54264805429417048003182927607660060618096