How can I use a Laplace Transform if the bound is ln(2)???

Поделиться
HTML-код
  • Опубликовано: 13 янв 2025

Комментарии • 11

  • @the.lemon.linguist
    @the.lemon.linguist 18 дней назад +6

    i still can't even begin to comprehend how some people think of these solitons

    • @owl3math
      @owl3math  18 дней назад +4

      Hi Lemon. Yes it’s a nice method!

  • @doronezri1043
    @doronezri1043 18 дней назад +2

    Excellent👏👏👏 Almost what I meant... Will send a slightly modified version by email 🍻

    • @owl3math
      @owl3math  18 дней назад

      Nice thanks! Had a feeling your way could be a little different :)

  • @slavinojunepri7648
    @slavinojunepri7648 18 дней назад +2

    Excellent

    • @owl3math
      @owl3math  18 дней назад

      thanks Slavino!

  • @o0QuAdSh0t0o
    @o0QuAdSh0t0o 18 дней назад +2

    Unit step function feels like Dirac delta function?

    • @owl3math
      @owl3math  18 дней назад +3

      closely related. Unit step function is the integral of dirac delta or dirac delta can be considered like a derivative of the step function.

  • @maxvangulik1988
    @maxvangulik1988 18 дней назад +3

    u=e^x
    du/u=dx
    I=int[1,2](ln(u)/u^3)du
    U=ln(u)
    dv=du/u^3
    dU=du/u
    v=-1/2u^2
    I=-ln(2)/8+1/2•int[1,2](u^-3)du
    I=-ln(2)/8+3/16

  • @adandap
    @adandap 18 дней назад +1

    Cool. You could also namnyeF it by noting that the target integral is - d/da Int[ e^(-a x)].

    • @owl3math
      @owl3math  18 дней назад

      Yep good point! You could namnify it