Custom object detection in Python using YOLOv8

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии • 16

  • @LWatson
    @LWatson Год назад +1

    Wow this is genuinely fantastic tutorial, thanks!

  • @Athens1992
    @Athens1992 Год назад +1

    do u have an example if u want to do image augmentation so a flip in an image would someone need also to flip the coordinates of the labels.
    welcome back to youtube.

    • @abhishekkrthakur
      @abhishekkrthakur  Год назад +1

      thanks! albumentations takes care of flipping coordinates too!

    • @Athens1992
      @Athens1992 Год назад

      @@abhishekkrthakur thanks i am gonna check it

  • @sanjoetv5748
    @sanjoetv5748 Год назад

    can you teach us how to customized yolov8 landmark for measurement. Modify the architecture of the yolov8 landmark to measure and object size. can you do that?

  • @bilalshahid7494
    @bilalshahid7494 Год назад

    Hi, can you please tell how can I determine accuracy, precision and f1 score on my testing data?

  • @mr.musalman6801
    @mr.musalman6801 Год назад

    Thanks, for the video. How to fix that tensor board issue in Kaggle please explain.
    Also I wanna a video about segmentation using YOLO v8.
    Thanks again for this video.

  • @gunasekhar8440
    @gunasekhar8440 Год назад

    But my data set contains different dimensions of images. I have just completed the image annotations. But in the video he said that image size is very important. So what can j do now?

  • @prabaldutta1935
    @prabaldutta1935 Год назад

    How to train yolov8 for custom keypoint detection?

  • @girrajjangid4681
    @girrajjangid4681 Год назад

    Thanks @abhishek. Just a one question if we implement object detection which is better in MaskRCNN / yolo v7/8? I know MaskRCNN is segmentation model but it also produce bbox I am considering that. Your response will highly appreciable

    • @saeedahmad4925
      @saeedahmad4925 Год назад

      Mask RCNN is two stage detector, it will give you better mAPs on expense of inference times. Yolo is fast.

  • @glenn-jocher-ultralytics
    @glenn-jocher-ultralytics Год назад

    Yesss YOLOv8 😍

  • @YigalBZ
    @YigalBZ Год назад

    Thanks for the good video. The title is confusing - custom usually means my own date, yet you use an existing dataset, without showing hot to train my own images (labeling etc.).

    • @abhishekkrthakur
      @abhishekkrthakur  Год назад

      that existing data is also custom. its not a data creation video.

  • @venkateshr6127
    @venkateshr6127 Год назад

    Sir please we need separate book dedicated for transformers 🙏

  • @aroundTrip33
    @aroundTrip33 Год назад

    Camera!!