An Exponential Equation | Problem 345

Поделиться
HTML-код
  • Опубликовано: 2 ноя 2024

Комментарии • 13

  • @key_board_x
    @key_board_x Месяц назад +1

    z = 1 + i√3 ← this is a complex number
    The mudulus of z is: m = √[(1)² + (√3)²] = √[1 + 3] = √4 = 2
    The angle of z is β such as: tan(β) = (√3)/1 = √3 → β = π/3
    When you mulitply 2 complex numbers together, you can get a new complex number:
    - the new modulus is the product of the 2 modulus
    - the new angle is the sum of the 2 angles
    Characteristics of z^(n)
    Its modulus is: m^(n)
    It's angle is: β * n
    …and we want to get: 64 ← new complex number → modulus = 64 and angle = 2π
    m^(n) = 64 → where; m = 2
    2^(n) = 64
    2^(n) = 2 * 2 * 2 * 2 * 2 * 2
    2^(n) = 2^(6)
    n = 6
    angle:
    (π/3) * n = 2π
    n = 2π/(π/3)
    n = 2π * (3/π)
    n = 6π/6
    n = 6
    So, we can see that: z^(6) = 64

  • @Etienne-pq3dx
    @Etienne-pq3dx 2 месяца назад

    Absolute value method is great !
    Very clean and accurate
    |z| = |w| ==> Absolute values are ALWAYS equal 👌

  • @Augustus9720
    @Augustus9720 2 месяца назад +1

    Let x=e ^iπ/3,So (2x )^n=64,and x ^3=-1,so let n=3k,(-8) ^k=64,k=2,n=6

  • @rickdesper
    @rickdesper 2 месяца назад

    Exponentiation in the complex plane is very simple if you use polar form. (r cis (theta))^n = r^n cis (n theta), where cis(theta) = cos theta + i sin theta. For the number have, r = sqrt(4) and theta=pi/3.

  • @levpal34
    @levpal34 2 месяца назад

    Really like the 3d method. Very nice

    • @aplusbi
      @aplusbi  Месяц назад

      Thanks so much 😊

  • @mcwulf25
    @mcwulf25 2 месяца назад +1

    The modulus of the lhs is 2 so n=6.

  • @Alians0108
    @Alians0108 2 месяца назад

    Would you say it's true that if there exists a real number such that the equation holds, it has to be n = 6 because 2^6 = 64?

  • @scottleung9587
    @scottleung9587 2 месяца назад

    I also got n=6.

  • @MaheshKumar-lx1ku
    @MaheshKumar-lx1ku 2 месяца назад

    Method 4:
    (1+√3 i)^n=64
    2^n(1/2+√3/2 i)n = 64
    (-2w)^n =64
    n=6

  • @pedromendes6846
    @pedromendes6846 Месяц назад

    I'm getting it wrong and I can't see why
    (1+i√3)^n = |1+i√3|^n * e^(inπ/3) = 2^n * e^(inπ/3) = 64
    2^n * e^(inπ/3) = 2^6
    n*ln2 + inπ/3 = 6ln2
    n = 6ln2 / (ln2 + iπ/3) which does not simplify to n = 6

  • @walterwen2975
    @walterwen2975 2 месяца назад

    An Exponential Equation: (1 + i√3)^n = 64; n =?
    Let: a = 1 + i√3; a² = (1 + i√3)² = - 2 + 2i√3 = - 2 + 2(a - 1) = 2a - 4
    a³ = a(a²) = a(2a - 4) = 2a² - 4a = 2(2a - 4) - 4a = - 8, a⁶ = (a³)² = (- 8)² = 64
    (1 + i√3)^n = a^n = 64 = a⁶; n = 6
    Answer check:
    n = 6: (1 + i√3)^6 = 64; Confirmed as shown
    Final answer:
    n = 6