по такой логике, ты должен, если учишься или работаешь 5/2 (не на удаленке), 102 раза в год статистически, но У МЕНЯ ПОЧЕМУ-ТО ТАКОЕ НАИТИЕ, что не ТЫ, не ВСЁ твое окружение ни разу не видел живых динозавров. Знаешь почему? 50 на 50 шансы, куча детей услышала от Кота шредингера не принимая во внимание факт, что кот МОЖЕТ погибнуть, а может выжить с ВЕРОЯТНОСТЬЮ 50%. В твоем рассуждении динозавр = кот, встреча на улице = вероятность выживания кота. Только в коте шредингера мы уверены, что шанс 50% на распад изотопа. Какой шанс встретить живого динозавра? ну с учетом, что живого динозавра в нашем мире нет, то вероятность наступления события стремится к нулю. Дети тиктока
@@RandeYTхотя чего мне распыляться. Не понял аналогии свалил на ну тупые. В социуме очень разбирающийся индивид. С другой стороны я тоже не всезнающий. Хотя это не отменяет того факта что люди тупые животные как и я в том числе. Как и все
@@RandeYT задушнил то как🤓, динозавр - любой пример, который можно менять на что угодно, на то что я ребенок тик тока например)) простая математическая шутка, которую ты развернул на 180° градусов. Лайкнувшие коммент, вполне спокойно поняли шутку и все. Ребенок матфака..
Русский смит-вессен секрет игры: барабан прокручивается без значимого трения и вес патрона утягивает его в самый низ, таким образом первые 3 попытки будут безопасными, за исключением вероятности попадания патрона при прокручивании в угловой сектор ограниченый касательными к двум диаметрам патрона на радиусе барабана. P.s.: для более точного высчитывания угла сектора надо посчитать граничные условия обусловленые: 1) принципом работы механизма для доводки оси камеры барабана до оси ствола 2) сектором, в котором трение препятствует прокручиванию барабана под собственным весом, с учётом износа оси барабана.
Чем больше игроков в русскую рулетку, тем меньше игроков в русскую рулетку. А шанс одинаковый, потому что "вероятность" реализуется 1 раз после вращения барабана. Вернее то, что понимается под шансами и вероятностями, потому что вероятностей никаких нет: это - выдумка. Патрон именно там, куда его поместит "механизм мироздания" и он же заставит "игроков" выбрать порядок и, соответственно свою пулю. Всё детерминировано. Для одного шанс получить пулю - 100%, а для другого - 0. Просто мы ещё не знаем для кого какой.
@@RandeYT ТВ не нужна. Она неправильно называется и сбивает игрока с толку, внушая надежду, что у него есть какие-то шансы. На самом деле это - иллюзия. Можно просчитать сколько будет тех или иных исходов при множестве попыток, но никак нельзя определить какой будет при одной-единственной попытке.
@ Так на самом деле "вероятность", это состояние неопределенности, с неизвестными данными. Подбрасывание монетки, это не шанс 50 на 50. Можно попробовать учесть миллион разный переменных, от того какая рука ведущая у игрока, до силы трения ветра, и с большей точностью определить наступление определенного события. ТВ рассказывает дает прогноз основных процентных соотношений совершения события. ТВ не гарантирует результат, хотя почему то многие (в основном не шарящие за ТВ), думают, что если по ТВ шанс на победу 75% то можно ставить квартиру на игру.
@ Я к этому и вел, брат) Я согласен что в мире нет ничего случайного. Только для бросающего, но самый основные переменные влияющие на результат, с ними можно работать. ТВ работает как и должна, но опять же, она не гарантирует результат
В классическую рулетку (разрешено вращать барабан после каждого хода) можно играть просто от скуки, чтобы убить время. Но в фильмах играют чаще в рулетку на выбывание (барабан крутят лишь 1 раз в начале)- чтобы остался только один выживший
Для тех кто в танке и не понимает почему 2я задача верно решена, попробую расписать максимально подробно, в процентах, если дроби кого-то пугают. и так вероятности погибнуть|выжить после рандомного прокрута барабана в независимых событиях. (N = количество патронов) N Умер | Жив 1 16,67% | 83,33% 2 33,33% | 66,67% 3 50,00% | 50,00% 4 66,67% | 33,33% 5 83,33% | 16,67% 6 100,0% | 0% Теперь рассчитаем вероятность того что игра дойдет до каждого хода (последовательностью холостых выстрелов) и домножим на шанс боевого выстрела. Все данные из таблицы выше. В скобках: вероятности выжить. Без скобок: вероятности погибнуть. 1 (1) * 16,67 = 16,67% (1 потому что первый ход будет 100%, можно скипнуть это и так ясно); 2 (0.8333) * 33,33 = 27,78% 3 (0.8333) * (0,6667) * 50 = 27,78% 4 (0.8333) * (0,6667) * (0,5) * 66.67 = 18,52% 5 (0.8333) * (0,6667) * (0,5) * (33.33) * 83.33 = 7,72% 6 (0.8333) * (0,6667) * (0,5) * (33.33) * (0,1667) * 100 = 1.54% Первый игрок может погибнуть с каким то шансом на 1й, 3й, 5й выстрел. Второй игрок может погибнуть с каким то шансом на 2й, 4й, 6й выстрел. Вот и получаем 1й Игрок: 16.67 + 27,78 + 7,72 = 52,16% 2й Игрок: 27.78 + 18,52 + 1,54 = 47,84%
Как будто не совсем то считаем (особенно во втором примере). По факту мы считаем вероятность дойти до n выстрела и проиграть на нем и тогда цифры логичные. Если считать вероятности отдельно, то получится именно вероятность проиграть при измененных условиях (изменившемся количестве патронов). По сути это как на монетку перекладывать шансы, что выбросить 6 раз подряд решку вероятность будет очень маленькая, но любой бросок будет иметь сам по себе 50% каждый раз независимо от того, какой он в порядке
так тут каждый раз вероятность меняется (во втором случае), поэтому пример с монеткой некорректный. Не очень понимаю, почему мы считаем "не совсем то". Мы считаем мат ожидание каждого выстрела и потом высчитываем общие шансы выиграть/проиграть
Чет я тоже не совсем вкурил Как будто, первым все же выгоднее стрелять Потому что ты стреляешь и 1 и 3 выстрел, которые находятся в первой половине барабана, где вероятность умереть меньше😅 У меня в голове это выглядит именно так И шанс того, что я могу победить - это важно И еще можно высчитывать вероятность исходя из того, что мы не знаем, в какой именно ячейке находится пуля То есть, для 2 выстрела это должно выглядеть как 1/3, а еще я уже запутался сам😓😓
@@Danila_GD ещё раз задумался, что для первого, игра заканчивается, когда закончится 5 выстрелов, то есть, может оказаться так, что патрон в 6, но для второго игра начинается только если патрон не в 1/6, у второго есть шанс 1к5, что он умрёт, а у первого есть шанс, что он не умрёт 1к6 Можно разные вводные придумывать, карочи, мне кажется, все гораздо сложнее Потому что это игра ва-банк, тут надо считать иначе, мне кажется Кстати, сделай модель для данной задачки и поделись
@@kquq да что там делать, она слишком простая. Тут реально очевидно, что шансы 50 на 50. Ты можешь сам сделать это с помощью одного игрального кубика и случайного числа на рандомайзере. Каждый игрок поочерёдно переворачивает кубик на одно число выше. И кто первым доберётся до числа, которое зарандомилось на рандомайзере, тот и проиграл.
Да, я когда смотрел тоже думал об этих вероятностях, прикинул что 50/50 и так и оказалось Геймдизайнером я все таки отказался быть, не смог найти работу без опыта и толковых игр
Самая простая формула вероятности - нужное делим на всевозможное. По такой формуле вероятность любого события равна 1 (количество нужных событий - одно) делить на бесконечность (все возможные варианты событий, которые только могут быть), что равно числу, бесконечно движущемуся к нулю.
Если кому-то очень интересно проверить, правильны ли вычисления автора, набросал вам код на питоне, где программа сама с собой будет играть и считать кол-во игр: import random drum = [0,0,0,0,0,0] game_counter=0 plr1_death = 0 plr2_death = 0 def main(): global game_counter global plr1_death global plr2_death global drum while game_counter
@@RandeYT А что там писать. Попросил гпт, он написал (чуть поправил его правда). 0.5216 на смерть первого, это на 10млн случаев (посмотрел в видео и эта цифра совпадает)
Меня в сериале зацепило когда перед 5м выстрелом рекрутёр сказал, что теперь вероятность 50/50. И вроде интуитивно так. С другой стороны начальная вероятность, что выпадет любая комбинация, в том числе и с патроном в шестой ячейке, около 16%. И вот тут не могу сообразить, тот факт, что мы знаем, что первые 4 пусты влияют ли на вероятность или нет.
@@Danila_GD но как? Предположим, что два наблюдателя крутят такой барабан, только один проверяет ячейки и знает что первые 4 ячейки пустые, а второй не знает. На пятый раз проверять будут оба. Получается, что вероятность того что 5-я ячейка не-пустая для одного 50%, а для второго 16%. Разве такое может быть?
@ а почему такого не может быть?) Теория вероятностей впринципе рассматривает события, о которых у нас недостаточно информации. В твоем примере у двух игроков разный набор стартовой информации, поэтому для них разная вероятность. Например ты можешь играть в покер с шуллером. Для тебя вероятность выигрыша будет одна (например 55%), но для шуллера твоя вероятность выиграть будет 0%, так как он уже знает что выпадет.
9:16 А если на каждом ходе игрок будет делать выбор? Стрелять без проворота или добавить пулю и провернуть? Какая стратегия лучше для первого? Или второго? (Похоже на задание ЕГЭ 2026 по Информатике/Профильной математике?)
По идее стоит считать не совсем это, а вероятность того что тебе больше одного раза подряд выпадет пустой слот под патрон, тогда вероятность меняется, типо, ясен хер что если изолировано считать каждый выстрел то цифра будет одна, а если посчитать по другому то нет, да и если играть в рулетку на выбывание, где барабан не каждый раз крутят, то там лучше стрелять первым
Почему во втором варианте игры на 6 ход у игрока есть шанс выжить в 1.54%? Математически так выходит, но это означает неверные расчеты тк на 6 ход в барабане все ячейки заполнены патронами и шанс выжить 0%
Как игроки должны пихать новый патрон в барабан не паля растоновку патронов и не меняя порядка уже отсрелинных (не крутя барабан). Ну если только какой-нибудь независимый Диллер это будет делать, но даже так интуитивно ему будет понятно кого он будет обрекать на смерть (если он не будет раскручивать барабан)
Есть ещё распространённый вариант русской рулетки где игроки перед выстрелом могут ещё раз прокрутить или не крутить барабан. Вот тут интересно как действовать чтобы увеличить шансы
@Danila_GD просто благодаря интернету почти все любители казино знали бы, что платить за право выбора не стоит. Ну и эта игра была бы выгоднее рулетки, раз уж здесь 50% на выигрыш, то есть все бы играли в нее и тратили время одного из работников казино, причем эта игра бы еще и прибыли не приносила никакой
@@user-lk7nd2ot4g Да обмана-то особо нет. В слотах ртп прописан (меньше 100%), в других играх тоже понятно, что с каждой ставкой ты будешь проигрывать.
@@Danila_GD По идее да, но ходит миф, что, например, на 7-м слоте чаще выпадает шериф. При чем независимо у разных клубов такое в статистике игр видно было. Очень странно. Я генератор написал - там всё одинаково выходит
Какие-то неправильные подсчёты в последнем случае. Даже без математики, условно: пустых ячеек-то у первого игрока больше. Во втором случае, первый игрок играет с 1,3,5 пулями, а 2ой - 2,4,6. Значит, первому проще победить.
Нет. Так как вероятность что игра дойдет до 6 выстрела всего 1.54%. Как и показано на видео. То есть. С вероятностью 98.46% кто-то проиграет не дойдя до 6 раунда.
Как всегда очень интересно и познавательно!) Я несколько раз пересматривал все ваши видео про математику, и они вызвали у меня сильный интерес к математике как к инструменту для геймдизайна. Данила, могли бы вы порекомендовать, какие разделы математики стоит изучить? Помимо школьной программы, какие еще разделы могут быть полезны для геймдизайнера?
@@Danila_GD Кстати, предмет правильно называется - "Теория вероятностей". У нас препод давал последний шанс получить троечку всяким балбесам - скажи хотя бы как предмет называется. Тот говорит - теория вероятности. Теперь иди смотри, что на учебнике написано. Посмотрел? Ну и все.. Иди учи. Придешь потом на пересдачу. Смешно было.
а че как во второй части видоса, где новые патроны докидываем, получается что "Вероятность проиграть" на 6 выстрел 1.54%? тип там 6 патронов, а шанс проиграть всего 1.54%?) это как? чет не то считал получается, или я что-то не понял
Я когда смотрел я был уверен что револьвер не заряжен. В противном случае, второй игрок точно рискует умереть, если бы первый нарушил правила и успел бы его застрелить. Ну или когда шанс умереть был 100%, я не верил что второй игрок как и впринципе любой человек может нажать на курок. Я думал второй игрок ждёт когда первый нарушит правила, чтобы его наказать своим физическим превосходством.
@@MOCHET5 Вероятность выпадения всех исходов и так одинаковая. Тут уже чисто психология - немножко грустненько понимать, что было уже 5 попыток и на 6 точно будет выстрел и он твой. Это печально. Да. Но вероятность этого исхода точно такая же как и у всех других.
@@Danila_GD ну ладно , но обычно когда говорят про русскую рулетку , имеют виду где заряжают 5 патроном из 6 . А где заряжается один патрон в барабан считают американской .
@@dimkamertv да все подходящее, просто я не стал отдельно расписывать совсем очевидные вещи и сразу ввёл их внутрь основных расчётов. 1.54% это шанс, что до 6 выстрела никто не умрет
Ты вводишь людей в заблуждение когда подсчитываешь данные для каждого выстрела. Это НЕ вероятность проиграть, а вероятность что ИМЕННО ЭТОТ выстрел будет проигрышным для игрока. Потом эти все вероятности складываются и выходит верный результат. Я начала посмотрел, и думаю что за чушь, 1.5% на проигрыш при шестом выстреле с полным барабаном? Серьезно? 😆
@@Danila_GD да это понятно, я это и говорю. У тебя формулировка которая путает людей. Это не "Вероятность погибнуть с N выстрела", А Вероятность двух условий одновременно. 1. Что игра дойдет до N выстрела. 2. Что в гнезде будет патрон. Вычисления все корректны.
@@okyesanap а ок, может путает да, но честно я не ожидал такого интереса к видео сторонних зрителей, поэтому делал изначально с прицелом на тех, кто немного шарит.
@@Danila_GD а что тут пояснять, ты теорию вероятности вообще почитай, вероятность каждого следующего выстрела считается как умножение предыдущих вероятностей, а не как отдельное событие
@@Danila_GD 50% шанс это если с первого раза считать выстрел в шестизаряднике, в котором 3 пули, а тут надо считать учитывать вероятность каждой попытки, условно 5 выстрел подряд вероятность выше 90%
Для тех кто как я кликнул чтобы просто понять есть ли какая-то тактика в условиях одного прокрута барабана - нет, для двух игроков шанс 50% на победу Не пойму для чего автор придумал новые правила где снижаются шансы для одного из игроков
"мои шансы выжить - пять к одному!" - так однажды гордо сказал мой прадед. больше он ничего не говорил
Какой шанс встретить динозавра на улице? Либо да, либо нет, 50% шанс на это
по такой логике, ты должен, если учишься или работаешь 5/2 (не на удаленке), 102 раза в год статистически, но У МЕНЯ ПОЧЕМУ-ТО ТАКОЕ НАИТИЕ, что не ТЫ, не ВСЁ твое окружение ни разу не видел живых динозавров.
Знаешь почему? 50 на 50 шансы, куча детей услышала от Кота шредингера не принимая во внимание факт, что кот МОЖЕТ погибнуть, а может выжить с ВЕРОЯТНОСТЬЮ 50%.
В твоем рассуждении динозавр = кот, встреча на улице = вероятность выживания кота.
Только в коте шредингера мы уверены, что шанс 50% на распад изотопа. Какой шанс встретить живого динозавра? ну с учетом, что живого динозавра в нашем мире нет, то вероятность наступления события стремится к нулю.
Дети тиктока
@@RandeYTхотя чего мне распыляться. Не понял аналогии свалил на ну тупые. В социуме очень разбирающийся индивид. С другой стороны я тоже не всезнающий. Хотя это не отменяет того факта что люди тупые животные как и я в том числе. Как и все
@@RandeYTаниматоры есть...
@@RandeYTкупить книгу роофла для чайников??….
@@RandeYT задушнил то как🤓, динозавр - любой пример, который можно менять на что угодно, на то что я ребенок тик тока например)) простая математическая шутка, которую ты развернул на 180° градусов. Лайкнувшие коммент, вполне спокойно поняли шутку и все.
Ребенок матфака..
Русский смит-вессен секрет игры: барабан прокручивается без значимого трения и вес патрона утягивает его в самый низ, таким образом первые 3 попытки будут безопасными, за исключением вероятности попадания патрона при прокручивании в угловой сектор ограниченый касательными к двум диаметрам патрона на радиусе барабана.
P.s.: для более точного высчитывания угла сектора надо посчитать граничные условия обусловленые: 1) принципом работы механизма для доводки оси камеры барабана до оси ствола 2) сектором, в котором трение препятствует прокручиванию барабана под собственным весом, с учётом износа оси барабана.
Тоже об этом подумал типа патрон вниз утянет) но тут скорее дело техники
Сектор-приз на барабане! 🎉🎉🎉
наверное из-за этого его и поднимают стволом вверх
Видос на полтос, с 50% шансом поставлю лайк!
Чем больше игроков в русскую рулетку, тем меньше игроков в русскую рулетку.
А шанс одинаковый, потому что "вероятность" реализуется 1 раз после вращения барабана. Вернее то, что понимается под шансами и вероятностями, потому что вероятностей никаких нет: это - выдумка. Патрон именно там, куда его поместит "механизм мироздания" и он же заставит "игроков" выбрать порядок и, соответственно свою пулю. Всё детерминировано. Для одного шанс получить пулю - 100%, а для другого - 0. Просто мы ещё не знаем для кого какой.
Это со стороны наблюдателя при совершении самого события можно так говорить, но не игроку с неизвестными данными. На то и нужна ТВ.
@@RandeYT ТВ не нужна. Она неправильно называется и сбивает игрока с толку, внушая надежду, что у него есть какие-то шансы. На самом деле это - иллюзия. Можно просчитать сколько будет тех или иных исходов при множестве попыток, но никак нельзя определить какой будет при одной-единственной попытке.
@ Так на самом деле "вероятность", это состояние неопределенности, с неизвестными данными. Подбрасывание монетки, это не шанс 50 на 50.
Можно попробовать учесть миллион разный переменных, от того какая рука ведущая у игрока, до силы трения ветра, и с большей точностью определить наступление определенного события. ТВ рассказывает дает прогноз основных процентных соотношений совершения события.
ТВ не гарантирует результат, хотя почему то многие (в основном не шарящие за ТВ), думают, что если по ТВ шанс на победу 75% то можно ставить квартиру на игру.
@@RandeYT Неопределённость есть только для бросающего монету. А в мироздании всё детерминировано.
@ Я к этому и вел, брат)
Я согласен что в мире нет ничего случайного. Только для бросающего, но самый основные переменные влияющие на результат, с ними можно работать. ТВ работает как и должна, но опять же, она не гарантирует результат
В классическую рулетку (разрешено вращать барабан после каждого хода) можно играть просто от скуки, чтобы убить время.
Но в фильмах играют чаще в рулетку на выбывание (барабан крутят лишь 1 раз в начале)- чтобы остался только один выживший
Ну русской рулеткой вы убьëте не только время
А ты я смотрю разбираешься в этом, походу ты был последним, кто играл в эту игру от скуки
Я слышал что русская рулетка это миф. Где можно узнать достоверную информацию?
Для тех кто в танке и не понимает почему 2я задача верно решена, попробую расписать максимально подробно, в процентах, если дроби кого-то пугают.
и так вероятности погибнуть|выжить после рандомного прокрута барабана в независимых событиях.
(N = количество патронов)
N Умер | Жив
1 16,67% | 83,33%
2 33,33% | 66,67%
3 50,00% | 50,00%
4 66,67% | 33,33%
5 83,33% | 16,67%
6 100,0% | 0%
Теперь рассчитаем вероятность того что игра дойдет до каждого хода (последовательностью холостых выстрелов) и домножим на шанс боевого выстрела.
Все данные из таблицы выше.
В скобках: вероятности выжить.
Без скобок: вероятности погибнуть.
1 (1) * 16,67 = 16,67% (1 потому что первый ход будет 100%, можно скипнуть это и так ясно);
2 (0.8333) * 33,33 = 27,78%
3 (0.8333) * (0,6667) * 50 = 27,78%
4 (0.8333) * (0,6667) * (0,5) * 66.67 = 18,52%
5 (0.8333) * (0,6667) * (0,5) * (33.33) * 83.33 = 7,72%
6 (0.8333) * (0,6667) * (0,5) * (33.33) * (0,1667) * 100 = 1.54%
Первый игрок может погибнуть с каким то шансом на 1й, 3й, 5й выстрел.
Второй игрок может погибнуть с каким то шансом на 2й, 4й, 6й выстрел.
Вот и получаем
1й Игрок: 16.67 + 27,78 + 7,72 = 52,16%
2й Игрок: 27.78 + 18,52 + 1,54 = 47,84%
Вслушался в музыку на фоне и так тепло на душе стало! За Бастион лайк
Как будто не совсем то считаем (особенно во втором примере). По факту мы считаем вероятность дойти до n выстрела и проиграть на нем и тогда цифры логичные. Если считать вероятности отдельно, то получится именно вероятность проиграть при измененных условиях (изменившемся количестве патронов). По сути это как на монетку перекладывать шансы, что выбросить 6 раз подряд решку вероятность будет очень маленькая, но любой бросок будет иметь сам по себе 50% каждый раз независимо от того, какой он в порядке
так тут каждый раз вероятность меняется (во втором случае), поэтому пример с монеткой некорректный. Не очень понимаю, почему мы считаем "не совсем то".
Мы считаем мат ожидание каждого выстрела и потом высчитываем общие шансы выиграть/проиграть
Чет я тоже не совсем вкурил
Как будто, первым все же выгоднее стрелять
Потому что ты стреляешь и 1 и 3 выстрел, которые находятся в первой половине барабана, где вероятность умереть меньше😅
У меня в голове это выглядит именно так
И шанс того, что я могу победить - это важно
И еще можно высчитывать вероятность исходя из того, что мы не знаем, в какой именно ячейке находится пуля
То есть, для 2 выстрела это должно выглядеть как 1/3, а еще я уже запутался сам😓😓
@@kquq видишь как супер простая задачка может путать и поразному восприниматься. В этом коварство теории вероятностей
@@Danila_GD ещё раз задумался, что для первого, игра заканчивается, когда закончится 5 выстрелов, то есть, может оказаться так, что патрон в 6, но для второго игра начинается только если патрон не в 1/6, у второго есть шанс 1к5, что он умрёт, а у первого есть шанс, что он не умрёт 1к6
Можно разные вводные придумывать, карочи, мне кажется, все гораздо сложнее
Потому что это игра ва-банк, тут надо считать иначе, мне кажется
Кстати, сделай модель для данной задачки и поделись
@@kquq да что там делать, она слишком простая. Тут реально очевидно, что шансы 50 на 50. Ты можешь сам сделать это с помощью одного игрального кубика и случайного числа на рандомайзере.
Каждый игрок поочерёдно переворачивает кубик на одно число выше. И кто первым доберётся до числа, которое зарандомилось на рандомайзере, тот и проиграл.
Да, я когда смотрел тоже думал об этих вероятностях, прикинул что 50/50 и так и оказалось
Геймдизайнером я все таки отказался быть, не смог найти работу без опыта и толковых игр
Я тоже не могу, поэтому приходится делать свое)
Самая простая формула вероятности - нужное делим на всевозможное. По такой формуле вероятность любого события равна 1 (количество нужных событий - одно) делить на бесконечность (все возможные варианты событий, которые только могут быть), что равно числу, бесконечно движущемуся к нулю.
Если кому-то очень интересно проверить, правильны ли вычисления автора, набросал вам код на питоне, где программа сама с собой будет играть и считать кол-во игр:
import random
drum = [0,0,0,0,0,0]
game_counter=0
plr1_death = 0
plr2_death = 0
def main():
global game_counter
global plr1_death
global plr2_death
global drum
while game_counter
@@RandeYT тогда надо ещё и второй случай проверять
@@Danila_GD Ну если хочешь, я напишу код, брат)
@@RandeYT А что там писать. Попросил гпт, он написал (чуть поправил его правда). 0.5216 на смерть первого, это на 10млн случаев (посмотрел в видео и эта цифра совпадает)
Если код интересен:
import random
def russian_roulette_simulation_with_adding_bullets(num_simulations=10000000, num_chambers=6):
first_player_death_count = 0
second_player_death_count = 0
for _ in range(num_simulations):
# Инициализация барабана с одной пулей
chambers = [0] * num_chambers # 0 - пустая, 1 - пуля
bullet_position = random.randint(0, num_chambers - 1)
chambers[bullet_position] = 1
# Симуляция игры: игроки по очереди делают выстрелы
current_chamber = 0
for turn in range(num_chambers):
# Если пуля в текущей камере, игрок умирает
if chambers[current_chamber] == 1:
if turn % 2 == 0: # Первый игрок
first_player_death_count += 1
else: # Второй игрок
second_player_death_count += 1
break
# После каждого выстрела добавляем патрон и "крутим" барабан (перемещаем камеру случайным образом)
chambers[current_chamber] = 1
current_chamber = random.randint(0, num_chambers - 1)
# Вероятности
first_player_prob = first_player_death_count / num_simulations
second_player_prob = second_player_death_count / num_simulations
return first_player_prob, second_player_prob
# Запуск симуляции
first_prob, second_prob = russian_roulette_simulation_with_adding_bullets()
print(f"Вероятность смерти первого игрока: {first_prob:.4f}")
print(f"Вероятность смерти второго игрока: {second_prob:.4f}")
@@jijiDwuv только множество комментаторов с этим не согласны)
В русскую рулетку лучше играть Макаровым или ТТ. Заряжаем один патрон и жестом доброй воли предоставляем право первого выстрела оппоненту.
Мы с женой пробовали на игрушечном с 1 патроном , дальше 3 щелчка не получается , чаще всего 2 или 3 уже
А вы с реальным попробуйте
Спасибо, теперь я знаю как легко выигрывать в buckshot roullete(надеюсь правильно написал)
Прадед тоже рассказывал как он в русскую рулетку с настоящим патроном играл и проиграл.
Меня в сериале зацепило когда перед 5м выстрелом рекрутёр сказал, что теперь вероятность 50/50. И вроде интуитивно так. С другой стороны начальная вероятность, что выпадет любая комбинация, в том числе и с патроном в шестой ячейке, около 16%. И вот тут не могу сообразить, тот факт, что мы знаем, что первые 4 пусты влияют ли на вероятность или нет.
когда он это говорит - конечно влияет.
@@Danila_GD но как? Предположим, что два наблюдателя крутят такой барабан, только один проверяет ячейки и знает что первые 4 ячейки пустые, а второй не знает. На пятый раз проверять будут оба. Получается, что вероятность того что 5-я ячейка не-пустая для одного 50%, а для второго 16%. Разве такое может быть?
@ а почему такого не может быть?) Теория вероятностей впринципе рассматривает события, о которых у нас недостаточно информации. В твоем примере у двух игроков разный набор стартовой информации, поэтому для них разная вероятность.
Например ты можешь играть в покер с шуллером. Для тебя вероятность выигрыша будет одна (например 55%), но для шуллера твоя вероятность выиграть будет 0%, так как он уже знает что выпадет.
@@Danila_GD не соглашусь с этим примером. Исход предопределен, просто я этого не знаю. ) Здесь дело в чем-то другом.
@@alexjuly7097 так тут тоже самое. Для одного исход 50/50, для другого 16,6%
9:16 А если на каждом ходе игрок будет делать выбор? Стрелять без проворота или добавить пулю и провернуть? Какая стратегия лучше для первого? Или второго?
(Похоже на задание ЕГЭ 2026 по Информатике/Профильной математике?)
@@EnderP1gl1n так это же второй вариант задачи. Сравни цифры.
@Danila_GD Пеовый вопрос понятно, второй побеждает. Но стратегия для первого-вопрос интереснее…
По идее стоит считать не совсем это, а вероятность того что тебе больше одного раза подряд выпадет пустой слот под патрон, тогда вероятность меняется, типо, ясен хер что если изолировано считать каждый выстрел то цифра будет одна, а если посчитать по другому то нет, да и если играть в рулетку на выбывание, где барабан не каждый раз крутят, то там лучше стрелять первым
я не считал изолированно, я как раз показал, комбинаторные расчеты, и применил их же во втором примере
Почему во втором варианте игры на 6 ход у игрока есть шанс выжить в 1.54%? Математически так выходит, но это означает неверные расчеты тк на 6 ход в барабане все ячейки заполнены патронами и шанс выжить 0%
@@ViktorioLux это не шанс выжить, а шанс умереть на этом ходу. Там же сверху написано
@Danila_GD ааа ну я тогда оч извиняюсь, туплю под вечер
@@ViktorioLux хахахахахха
Как игроки должны пихать новый патрон в барабан не паля растоновку патронов и не меняя порядка уже отсрелинных (не крутя барабан). Ну если только какой-нибудь независимый Диллер это будет делать, но даже так интуитивно ему будет понятно кого он будет обрекать на смерть (если он не будет раскручивать барабан)
@@ДарвикВелесс а в каком из примеров такое требуется? В первом пихается только 1 патрон, а во втором барабан крутится каждый раз
Есть ещё распространённый вариант русской рулетки где игроки перед выстрелом могут ещё раз прокрутить или не крутить барабан. Вот тут интересно как действовать чтобы увеличить шансы
очевидно, что лучше каждый раз крутить
Самый лучший вариант выиграть в русскую рулетку, это не играть в неё . 😅
6:20 музыка из Human fall flat на фоне...
В казино можно просто умножать выигрыш не на 2, а на чуть меньший коэффициент и тогда не нужно будет вводить никакую плату за право принимать решения
@@алессерг можно, но это менее изящно.
@Danila_GD просто благодаря интернету почти все любители казино знали бы, что платить за право выбора не стоит. Ну и эта игра была бы выгоднее рулетки, раз уж здесь 50% на выигрыш, то есть все бы играли в нее и тратили время одного из работников казино, причем эта игра бы еще и прибыли не приносила никакой
@@алессергты недооцениваешь человеческую тупость)
@@алессерг Благодаря интернету можно узнать, что казино обманывает жёстко.
@@user-lk7nd2ot4g Да обмана-то особо нет. В слотах ртп прописан (меньше 100%), в других играх тоже понятно, что с каждой ставкой ты будешь проигрывать.
если во втором слоте пуля и ты 3 раза в себя выстрелишь то проиграешь, а по правилам вы стреляете по очереди, соответственно ты выиграешь
Да, но вероятность того, что пуля окажется среди первых трёх слотов - 50%.
чорт, я теперь хочу такую встроенную мини-игру....
В Фаркрае каком-нибудь смотрелось бы вполне-вполне.
При каком условии на 6-й выстрел есть вероятность 1,54% выжить, если все патроны в барабане?
@@Tvarenich это вероятность умереть ИМЕННО на шестом выстреле.
Проверку через генератор случайных чисел сделал? Выпусти аналогичный видос про спортивную мафию. Вероятность вытащить какую карту на каком месте
что именно тебя интересует? Там же всегда 30% что вытащишь черную карту и 70% что красную.
@@Danila_GD По идее да, но ходит миф, что, например, на 7-м слоте чаще выпадает шериф. При чем независимо у разных клубов такое в статистике игр видно было. Очень странно. Я генератор написал - там всё одинаково выходит
@@TryDotAtwo ты же понимаешь, что это просто байки и выборочная память? Я буквально сегодня играл в спортивную мафию и шриф ни разу не был на 7 боксе)
Какие-то неправильные подсчёты в последнем случае. Даже без математики, условно: пустых ячеек-то у первого игрока больше. Во втором случае, первый игрок играет с 1,3,5 пулями, а 2ой - 2,4,6. Значит, первому проще победить.
Нет. Так как вероятность что игра дойдет до 6 выстрела всего 1.54%.
Как и показано на видео.
То есть. С вероятностью 98.46% кто-то проиграет не дойдя до 6 раунда.
@@okyesanap спасибо за объяснение! Я каждый из выстрелов рассматривал отдельно)
Как всегда очень интересно и познавательно!)
Я несколько раз пересматривал все ваши видео про математику, и они вызвали у меня сильный интерес к математике как к инструменту для геймдизайна. Данила, могли бы вы порекомендовать, какие разделы математики стоит изучить? Помимо школьной программы, какие еще разделы могут быть полезны для геймдизайнера?
Теория вероятности, производные и интегралы, векторы
@@Danila_GD Кстати, предмет правильно называется - "Теория вероятностей". У нас препод давал последний шанс получить троечку всяким балбесам - скажи хотя бы как предмет называется. Тот говорит - теория вероятности. Теперь иди смотри, что на учебнике написано. Посмотрел? Ну и все.. Иди учи. Придешь потом на пересдачу. Смешно было.
@@yashureg6996 Возможно, я учился на гуманитария)
Фишки, работают!!!
Я охерел со 2 примера, как так выходит если у второго игрока патронов в барабане всегда больше
@@МихаилЛукьяненко-е8ы потому что все решают первые 3 выстрела, чаще всего игра на них закончится. А два из трех первых выстрелов делает первый игрок
@@Danila_GD не то чтобы "чаще", скорее в половине сыгранных игр)
@@RandeYT почему? Если по моему же видео судить, то 17%+27%+27%
@ Аааа, май бед май бед, я пропустил мимо глаз основные слова "со 2 примера", и все еще на первый думал
Сюжет решает 🤣
Хороший монтаж
GD ? Надеюсь, это не связано с сайтом доната одной игры...
@KiberAndy GD - это game designer
Но второй номер при выживании первого на 5ом выстреле может засадить шестой не себе а противнику
@@нагибатор-н7п да на этом как раз построен главный драматический момент первой серии
Так барабан же прокручивается после каждого выстрела, не?
в Игре в Кальмара они крутили барабан 1 раз. Есть версии, где прокручивается, но там все понятно с вероятностями.
а че как во второй части видоса, где новые патроны докидываем, получается что "Вероятность проиграть" на 6 выстрел 1.54%?
тип там 6 патронов, а шанс проиграть всего 1.54%?)
это как?
чет не то считал получается, или я что-то не понял
@@ДанилСуягин-я5ж это значит, что почти всегда кто то проиграет до этого момента
Это вероятность проиграть на конкретный ход, а не накопительная
Я когда смотрел я был уверен что револьвер не заряжен. В противном случае, второй игрок точно рискует умереть, если бы первый нарушил правила и успел бы его застрелить. Ну или когда шанс умереть был 100%, я не верил что второй игрок как и впринципе любой человек может нажать на курок. Я думал второй игрок ждёт когда первый нарушит правила, чтобы его наказать своим физическим превосходством.
@@mb19127 ну видишь, в сериале встретились два супер принципиальных человека.
А если я заряжу 5 патронов из 6?
Ну и конечно же после каждого выстрела вращать барабан
@ там обычная формула 1-(1-1/6)^x где х - это количество круток.
Щас по быстренькому напишу программу и скину результаты
Монтажик топ
Что за игра на 9.32 ?
@@АлексейЯмкин-в5б fourquarters.itch.io/roulette-knight-ludum-dare-41
Спасибо большое
Русская рулетка, если бы играющие догадывались посмотреть на барабан под углом сбоку 📉📉📉
На самом деле прикольно, хотя оригинальные правила вроде были не как в обоих вариантах )
а какие?
@@Danila_GD Обычно там есть у каждого игрока возможность крутануть барабан перед выстрелом. Таким образом вероятность как бы обнуляется )
@@MOCHET5 тогда да, там особо нечего считать)
@@MOCHET5 Вероятность выпадения всех исходов и так одинаковая. Тут уже чисто психология - немножко грустненько понимать, что было уже 5 попыток и на 6 точно будет выстрел и он твой. Это печально. Да. Но вероятность этого исхода точно такая же как и у всех других.
@@Danila_GD Да, поэтому твои варианты поинтереснее )
интересно, спасибо
Пишу из рая, не получилось..
@@faky2139 в целом, если ты в раю, значит что-то все же получилось
Не возможно, т.к. это роскомнадзор, что является одной из причин не попадания в рай по Библии
Осечка оружия не учитывается? Делай перерасчет😂😂😂
он же вкурсе что русская рулетка это когда в барабане 5 патронов из 6
@@Sergkomp6090 ru.m.wikipedia.org/wiki/%D0%A0%D1%83%D1%81%D1%81%D0%BA%D0%B0%D1%8F_%D1%80%D1%83%D0%BB%D0%B5%D1%82%D0%BA%D0%B0
@@Danila_GD ну ладно , но обычно когда говорят про русскую рулетку , имеют виду где заряжают 5 патроном из 6 . А где заряжается один патрон в барабан считают американской .
@@Sergkomp6090 первый раз о таком слышу. Мне кажется это скорее какой-то мем.
@@Sergkomp6090 че ты несешь?
А где практический тест?
@@Bannedfordiscrimination что ты имеешь ввиду?
Не играйте с ним в русскую рулетку😊
С ним я в азартные игры играть не буду!
Последний расчёт вообще фигня, какой 1.54 % когда в барабане 6 патронов
@@shohruxabdurazzoqov7366 пять
@@Danila_GD у тебя шестой выстрел написано вероятность проиграть 1.54%, когда весь барабан забит пулями шанс проиграть 1% это как вообще
@@Danila_GD у тебя формула не подходящая, ты что то напутал
@@dimkamertv да все подходящее, просто я не стал отдельно расписывать совсем очевидные вещи и сразу ввёл их внутрь основных расчётов. 1.54% это шанс, что до 6 выстрела никто не умрет
Ты вводишь людей в заблуждение когда подсчитываешь данные для каждого выстрела.
Это НЕ вероятность проиграть, а вероятность что ИМЕННО ЭТОТ выстрел будет проигрышным для игрока.
Потом эти все вероятности складываются и выходит верный результат.
Я начала посмотрел, и думаю что за чушь, 1.5% на проигрыш при шестом выстреле с полным барабаном? Серьезно? 😆
@@okyesanap ещё раз, это вероятность умереть именно от 6 выстрела. Она такая маленькая потому что почти всегда кто то умрёт раньше.
@@Danila_GD да это понятно, я это и говорю.
У тебя формулировка которая путает людей.
Это не "Вероятность погибнуть с N выстрела",
А Вероятность двух условий одновременно.
1. Что игра дойдет до N выстрела.
2. Что в гнезде будет патрон.
Вычисления все корректны.
@@okyesanap а ок, может путает да, но честно я не ожидал такого интереса к видео сторонних зрителей, поэтому делал изначально с прицелом на тех, кто немного шарит.
если предпоследний выстрел это у тебя 50% себя убить, то хреновый ты математик
@@gorkiy3660поясняй
если сегодня не ответишь, удалю твою коммент, чтобы он не смущал людей. Потому что в видео все верно
@@Danila_GD а что тут пояснять, ты теорию вероятности вообще почитай, вероятность каждого следующего выстрела считается как умножение предыдущих вероятностей, а не как отдельное событие
@@Danila_GD 50% шанс это если с первого раза считать выстрел в шестизаряднике, в котором 3 пули, а тут надо считать учитывать вероятность каждой попытки, условно 5 выстрел подряд вероятность выше 90%
@@gorkiy3660 еще раз внимательно посмотри видео и у тебя отпадут все вопросы, если, конечно, ты правда знаком с теорией вероятности
Для тех кто как я кликнул чтобы просто понять есть ли какая-то тактика в условиях одного прокрута барабана - нет, для двух игроков шанс 50% на победу
Не пойму для чего автор придумал новые правила где снижаются шансы для одного из игроков
@nekaruma это не я придумал, а Игра в Кальмара
Я нашел анекдот из которого сбежал автар ruclips.net/video/qUoMVbo0l28/видео.htmlsi=EUYWjfbXvqnixwYV