Multivariate Gaussian distributions

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 107

  • @MacMac0710
    @MacMac0710 6 лет назад +30

    This is great because you explain notation as well as giving solid examples!

    • @blasttrash
      @blasttrash Год назад

      at 6:30 at the bottom right there is a contour plot where its printed that
      (sigma_11)^2 > (sigma_22)^2
      What exactly is sigma_11 in that diagram? Is it the distance from center point of the contour plot to first concentric circle? or is it distance from center to 2nd concentric circle? or is it distance from center to 3rd concentric circle? Or is it something else? Similarly what is sigma_22?

    • @prathamhullamballi837
      @prathamhullamballi837 Год назад

      @@blasttrash When you look at the contour plot but only taking x axis, then the variance associated with distribution along x-axis is (sigma_11)^2. Similarly, for y-axis, it would be (sigma_22)^2. Look at how the 'spread' in the contour plot along x-axis is more than the same along y-axis? That is precisely what we mean by (sigma_11)^2 > (sigma_22)^2.
      Note that the circles are just contour plots and the distance from it to the centre doesn't necessarily mean it is sigma_11 or anything.

  • @christinhainan
    @christinhainan 12 лет назад +6

    I find your RUclips videos much more helpful to learn - compared to the class videos. Maybe because I suffer from short attention span.

  • @alisalimy9387
    @alisalimy9387 5 лет назад +1

    Hard to find a good explanation of this problem, until i found this! Great job Alexander!!!

  • @dsilvavinicius
    @dsilvavinicius 8 лет назад +5

    Finally a good explanation of the geometry interpretation of two-dimensional Gaussian! Great job!

  • @張浩浩-i5z
    @張浩浩-i5z 4 года назад

    Thanks for you. Alexander. The best one I have seen.

  • @rajanalexander4949
    @rajanalexander4949 3 года назад +2

    Great explanation -- especially the graphical interpretation and example. Thank you!

  • @amirkeramatian653
    @amirkeramatian653 7 лет назад +3

    Very helpful video with clear explanations. Thanks a lot!

  • @jiongwang7645
    @jiongwang7645 11 лет назад

    thank you very much, this is succinct and easy to understand, way better than many text books !!

  • @renato5668
    @renato5668 3 года назад

    This is a great explanation, it helped a lot

  • @ИванВайгульт
    @ИванВайгульт 3 года назад

    Ha, the approach of decomposing the covariance matrix would be a nice example of PCA!

  • @ZLYang
    @ZLYang Год назад +1

    At 4:32, if x and μ are row vectors, [x-μ] should also be a row vector. Then how to multiply (Σ^(-1))* [x-μ]? Since the dimension of (Σ^(-1)) is 2*2, and the dimension of [x-μ] is 1*2.

  • @d-rex7043
    @d-rex7043 2 года назад

    This should be mandatory viewing, before being assaulted with the symbolic derivations!

  • @RonnyMandal75
    @RonnyMandal75 8 лет назад +47

    Haha, why would someone vote this down? This is great!

    • @boyangchen5544
      @boyangchen5544 5 лет назад +1

      exactly the best I can find

    • @chrischoir3594
      @chrischoir3594 5 лет назад +3

      They voted it down because hey are probably democrats and they don't like truth and facts

    • @llleiea
      @llleiea 4 года назад +4

      Ronny Mandal maybe bc there are some small mistakes

    • @fupopanda
      @fupopanda 4 года назад +3

      He does have mistakes and really bad inconsistencies throughout the slides. Not enough to dislike though, but enough to not be surprised of the dislikes.

    • @LegeFles
      @LegeFles 3 года назад +1

      @@chrischoir3594 I thought the republicans don't like truth and facts

  • @yurpipipchz75
    @yurpipipchz75 Месяц назад

    Thank you for the knowledge!

  • @visheshsinha_
    @visheshsinha_ 4 года назад

    Thank You so much , I was struggling to understand this , you made it really simple.

  • @JieunKo-v1l
    @JieunKo-v1l 4 месяца назад

    Thanks for wonderful explanation Do you share slides?

  • @K4moo
    @K4moo 10 лет назад +2

    Thank you for sharing, very useful.

  • @avijoychakma8678
    @avijoychakma8678 6 лет назад +1

    Nice explanation. Thank you so much.

  • @martynasvenckus423
    @martynasvenckus423 2 года назад +1

    At 5:32, Alexander says "The scaling of the sigmas is accomplished by creating a diagonal covariance matrix". Could you explain what does "scaling of the sigmas" mean? Where are they being scaled? Thanks

    • @timvandewauw1045
      @timvandewauw1045 2 года назад

      When calculating the joint distribution p(x1)p(x2) for vector x_underlined = [x1 x2], he vectorizes (x1-mu2) and (x1-mu2) to the vector form (x_underlined-mu_underlined). I believe what he means by scaling of the sigmas, is a similar transformation from two seperate, scalar sigmas to a matrix, in this case the covariance matrix Sigma.

  • @nates3361
    @nates3361 2 года назад

    Excellent explanation

  • @elumixor
    @elumixor 4 года назад +1

    I think there is an error in the maximum likelihood formula in the order of vector multiplication. The way you have it makes the operation a dot product, not the outer product.

  • @chyldstudios
    @chyldstudios 2 года назад

    Solid explanation.

  • @spyhunter0066
    @spyhunter0066 2 года назад

    Could you explain more about the sum of the vectors in your notations for the maximum likelihood estimates at the minute 1.45? As far as I have noticed, there has been only one data set, namely one x vector. Thus, what actually are you summing up with j indices? Cheers.

  • @spyhunter0066
    @spyhunter0066 2 года назад

    I'd like to know how you call your x value for univariate caseü or x value set for multivariate case in your Gaussian distribuitons? Do you name them as "data set" or " variable set"? Also, what makes the mean value size same as the x data size? Thanks in advance. Should we think that we create one mean average for every added x data point in our data set? That's why we average them when we find the best estimated value in the end.

  • @thomasbloomfield4070
    @thomasbloomfield4070 7 лет назад +1

    At 11:00 isn't that the eigenvalue matrix, not the eigenvector matrix?
    Thanks for the great video!

  • @spyhunter0066
    @spyhunter0066 2 года назад

    In the formula at the minute 2.11, when you find the inverse of a Sigma matrix in the exp(...) , do you use unit matrix method, any coding , or some other method? Cheers.

  • @ProfessionalTycoons
    @ProfessionalTycoons 6 лет назад

    clear explanation very good

  • @nyctophilic1790
    @nyctophilic1790 4 года назад

    Thank you so much , awsome work

  • @amizan8653
    @amizan8653 10 лет назад +4

    that was extremely helpful, thanks for posting!

  • @kaushik900
    @kaushik900 8 лет назад +1

    At 11:02, you mean Xb=X*sqrt(EIGEN VALUE MATRIX) right?

  • @spyhunter0066
    @spyhunter0066 2 года назад

    At the minute of 1.34, the maximum likelihood estimates formula has 1 over N coefficient. On the other hand, at the minute of 3.13, there is 1 over m coefficients. We know that N and m is the total number of values in the sums, but what is the reason you used different notations as N and m. Is it just to seperate univariate and multivariate cases while they keep their definitions (or meaning)? Also, the j values in the lower and upper limits of sum sembols are not so clear in this notation. Should we write j=1 to j=m or N for instance?

  • @GundoganFatih
    @GundoganFatih 3 года назад

    6:28 why do we create a diagonal cov. matrix. Let X be a feature set of two features (mx2), shouldn't sigma be cov(X)?

  • @hcgaron
    @hcgaron 6 лет назад

    is the vector x assumed to be a row vector? I ask only because we have x - mu which is a row vector inside the exponential. To subtract components, would we not assume that x is a row vector like mu?

  • @spyhunter0066
    @spyhunter0066 2 года назад

    should we get x vector also as a row vector with length d just like nü (mean) vector at the minute of 1.44!

  • @parshantjuneja4811
    @parshantjuneja4811 3 года назад

    Thanks dude! I get it now! Well almost ;)

  • @osamaa.h.altameemi5592
    @osamaa.h.altameemi5592 11 лет назад

    Very nice video thank you.

  • @emirlanaliiarbekov8729
    @emirlanaliiarbekov8729 3 года назад

    clearly explained!

  • @hayekpower5464
    @hayekpower5464 3 года назад

    Why does x is a row vector instead of column vector?

  • @karthiks3239
    @karthiks3239 11 лет назад

    Really nice video.. Thanks a lot.. !

  • @samfriedman5031
    @samfriedman5031 10 месяцев назад

    4:07 MLE for sigma-hat should be X by X-transpose (outer product) not X-transpose by X (inner product)

  • @spyhunter0066
    @spyhunter0066 2 года назад

    One more question about the example at the minute of 4.24, you said independent x1 and x2 variables. Independendent of what??? As far as I see, you can have 2 univariate formula like in this example, but when you combine them to see the combined likelihood, you have to have a mean vector in size of 2 and Sigma matrix iin size of 2x2. That's always the case, right? The size of the mean vector and the Sigma matrix look like defined by the number of combination of x values. Is that right? I saw another example somewhere else, you can have L(μ=28 ,σ=2 | x1=32 and x2=34) for instance to find the combined likelihood at x1=32 and x2=34, and he uses only one mean and sigma for both. REF:ruclips.net/video/Dn6b9fCIUpM/видео.html&ab_channel=StatQuestwithJoshStarmer

  • @laurent__9032
    @laurent__9032 5 лет назад

    Love your videos! Isn't there a small mistake where you place your transpose ? Should'nt it be $\Delta^2=(x-\mu)^T\Sigma(x-\mu)$ instead ?

  • @PravNJ
    @PravNJ 5 лет назад

    Thank you. This was helpful!

  • @ProfessionalTycoons
    @ProfessionalTycoons 5 лет назад +1

    thank you for this post!

  • @ayasalama7965
    @ayasalama7965 6 лет назад

    in 12:45 shouldn't the expression on top of the graph be XD rather than XC ? great video !

  • @shivampadmani_iisc
    @shivampadmani_iisc 9 месяцев назад

    Thank you so much so much sooooo much

  • @andrew-kd4jk
    @andrew-kd4jk 11 лет назад

    very good tutorial

  • @snesh93
    @snesh93 3 года назад

    From 4:12 to 6:24 where is an explanation on the Independent Gaussian models, I have a basic doubt on the Sigma calculation. I am finding hard to understand that sigma needs to be a diagonal matrix of (sigma_1*sigma_1 , sigma_2*sigma_2), shouldnt it be a matrix of the form [[sigma_1*sigma_1, sigma_1*sigma_2], [sigma_2*sigma_1, sigma_2*sigma_2]] ? Can anyone explain that to me ?

    • @AlexanderIhler
      @AlexanderIhler  2 года назад

      The covariance matrix of a zero man Gaussian has entries sig_ij = E[xi xj]. So if xi and xj are independent, this is zero except along the diagonal. I think you’re describing a rank 1 matrix? Which is different from independence in probability.

  • @dc6940
    @dc6940 4 года назад

    So, when features are independent, finding P(x1) and P(x2) individually and then multiplying is same as finding using multivariate gaussian distribution 6:13 ? Is my understanding correct?

  • @tomt8691
    @tomt8691 8 лет назад

    This is fantastic!
    Thank you!

  • @abdoelrahmanbashir4096
    @abdoelrahmanbashir4096 4 года назад

    thank you teacher :)

  • @georgestamatelis7812
    @georgestamatelis7812 3 года назад

    thank you

  • @livershotrawmooseliver2498
    @livershotrawmooseliver2498 10 лет назад

    What is meant by compressing a 2D Gaussian function in 3D?

    • @AlexanderIhler
      @AlexanderIhler  10 лет назад +1

      Sorry; where is that?
      Most likely I simply meant that, to draw a 2D Gaussian distribution requires a 3D drawing -- 2 variables x1,x2, plus the probability p(x1,x2). It's inconvenient to try to render 3D functions, so we usually plot contours in 2D instead (x1 and x2), with the contours indicating the lines of equal probability, p(x1,x2)=constant.

    • @livershotrawmooseliver2498
      @livershotrawmooseliver2498 10 лет назад

      Is it possible to compress a 2D Gaussian function?

  • @Tokaexified
    @Tokaexified 6 лет назад +1

    I fell asleep watching this video with both hands under my head…when I woke up both of them had fell seep asleep and wouldn't wake up in a while..

  • @alaraayhan7762
    @alaraayhan7762 4 года назад

    thank you !!

  • @spyhunter0066
    @spyhunter0066 2 года назад

    At 5.23, you should have said (x-mu) transpose.

    • @AlexanderIhler
      @AlexanderIhler  2 года назад +1

      These slides have a number of transposition notation errors, due to my having migrated from column to row notation that year. Unfortunately RUclips does not allow updating videos, so the errors remain. It should be clear in context, since i say “outer product” for the few non inner products.

    • @spyhunter0066
      @spyhunter0066 2 года назад +1

      @@AlexanderIhler NO worries, we spot them.

  • @utsavdahiya3729
    @utsavdahiya3729 5 лет назад

    Thank youuuuuuuuuu♥️♥️♥️♥️♥️♥️♥️

  • @harshitk11
    @harshitk11 3 года назад

    x needs to be a column vector instead of row vector.

  • @muratakjol1437
    @muratakjol1437 4 года назад +1

    Summary: 13:02

  • @quangle5701
    @quangle5701 3 года назад +1

    Can anyone explain how to vectorize the formula at 5:16? Thanks

  • @100uo
    @100uo 11 лет назад

    awesome, thank you man!

  • @CSEfreak
    @CSEfreak 11 лет назад

    AMazing thank you

  • @OrhaninAnnesi
    @OrhaninAnnesi 7 лет назад +1

    please stop using probability density and probability interchangeably. The formula for a normal distribution never gives a probability, but a probability density, which can be greater than 1.

  • @samarths
    @samarths 7 лет назад

    thanks a lot

  • @lemyul
    @lemyul 5 лет назад

    thanks alexa

  • @farajlagum
    @farajlagum 9 лет назад

    Thumb up!

  • @ilyaskapenko8089
    @ilyaskapenko8089 5 лет назад

    at ruclips.net/video/eho8xH3E6mE/видео.html
    Why Delta^2 = (x-mu) * Σ^-1 * (x-mu)^T, not
    Delta^2 = (x-mu)^T * Σ^-1 * (x-mu)?

  • @콘충이
    @콘충이 4 года назад

    wow

  • @heyptech1726
    @heyptech1726 6 лет назад

    nice

  • @amitcraul
    @amitcraul 6 лет назад +1

    at 9:24 Σ= UΛU^-1 instead of Transpose

  • @austikan
    @austikan 5 лет назад +1

    this guy sounds like Archer.

  • @bingbingsun6304
    @bingbingsun6304 Год назад

    学习

  • @umbhutta
    @umbhutta 4 года назад

    wow 1.5K supporter and just 40 haters :P

  • @danny-bw8tu
    @danny-bw8tu 6 лет назад

    it is not 2 dimension, it is 3 dimension

  • @torTHer68
    @torTHer68 4 года назад

    ale beka xd

  • @spyhunter0066
    @spyhunter0066 2 года назад

    Can you tell me the diffference between bivariate and multivariate case ? Can you also mention about when the parameters are dependent where we add extra dependence coefficient parameter? There is a sample video to refer for you give a better idea: ruclips.net/video/Ehm0mclZs54/видео.html

    • @AlexanderIhler
      @AlexanderIhler  2 года назад

      Bivariate = 2 variables; multivariate = more than one variable. So bivariate is a special case, in which the mean is two-dimensional and the covariance is 2x2. Above 2 dimensions it is hard to visualize, so I usually just draw 2D distributions; but the mathematics is exactly the same.

    • @spyhunter0066
      @spyhunter0066 2 года назад

      @@AlexanderIhler Your initial case of 1D Gaussian with only one x value is indeed a bivariate case with one x value with two parameters,the mean and the sigma value, right? Also, bivariate case can be called the simplest case of multivariate occasion, right? If we have a data set x and a multiple variable of mean and sigmas, we have to use your MULTIVARIATE CASE with a vector of x values and mean values with a covariance matrix for the sigma values, shouldn't we?
      Thanks for the help in advance.

    • @AlexanderIhler
      @AlexanderIhler  2 года назад

      No, those are the parameters; if “x” (the random variable) is scalar, it is univariate, although the distribution may have any number of parameters. So, if x is bivariate, x=[x1,x2], the mean will have 2 entries and the covariance 4 (3 free parameters, since it is symmetric), so the distribution has 5 parameters total.

    • @spyhunter0066
      @spyhunter0066 2 года назад +1

      @@AlexanderIhler x is your data point, right! If it is only one scalar value, the case is called univariate case, but if it is a vector of scalar values of two, it is called bivariate by definition. That's it. For bivariate and multivariate case where the data x variable is a vector of size d, the mean is also a vector of the same size of x vector. Thus, the covariance matrix by definition the square matrix has to have d by d matrix if x and mean has d dimension as you said . I assume you said 5 parameters in total, because symmetric terms are equal in covariance matrix, so 4-1=3 parameters coming from that Sigma matrix with size d x d .

  • @fupopanda
    @fupopanda 4 года назад

    Too many mistakes in the slides. But otherwise good explanation.

  • @joschk8331
    @joschk8331 6 лет назад +1

    the video is great but your audio sucks. buy an adequate microphone

    • @jfrohlich
      @jfrohlich 6 лет назад +6

      I can understand everything he's saying just fine.