Mod-01 Lec-10 Multivariate normal distribution

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 85

  • @philippelandry5209
    @philippelandry5209 8 лет назад +28

    The best tutorial on the subject I found amongst many others. Thank you very much.

  • @haley087
    @haley087 10 лет назад +27

    My native English speaking Stats prof. could only dream of being this clear... Thank you very much!

    • @bonngermany77
      @bonngermany77 9 лет назад

      How do you know that he is not a native English speaker?

    • @Thaifunn1
      @Thaifunn1 8 лет назад

      +bonn germany obviously the accent :). Still very good to understand.

    • @thextrmntr
      @thextrmntr 8 лет назад +6

      He is an Indian.

    • @sunilreddy146
      @sunilreddy146 7 лет назад +1

      my prof is busy hovering his mouse pointer over slides rather than putting some effort into writing a single word.

  • @pavelgladkevich169
    @pavelgladkevich169 5 лет назад +6

    I'm so glad that I found this lecture! Multivariate normal distribution was making no sense to me when I was starting at the page in my textbook. Your examples are superb and they build intuition very well. Love this!

  • @meghasharma7750
    @meghasharma7750 2 года назад

    I am eternally grateful for you.a teacher like you is what we students need .i didn't feel hint of doubt in this whole video of 53 mins.The only thing I could be is grateful for you .this world needs more teacher like you.i respect your profession and YOU sir.
    Thankyou so much

  • @tomt8691
    @tomt8691 8 лет назад +4

    How come most professors don't lecture with such clarity like Dr Maiti?
    You're awesome sir!

  • @hemantyadav1047
    @hemantyadav1047 4 года назад +1

    Now IK, everything, Hats off to the Prof. Love his teaching style.

  • @rajiv-kc
    @rajiv-kc 4 года назад +1

    Probably the best explanation of MVND that I have seen so far.

  • @adeebhakim3091
    @adeebhakim3091 7 лет назад +9

    What a clear and an excellent teaching method!

  • @aseefzahir8789
    @aseefzahir8789 8 лет назад +1

    You sir are the best tutor in youtube for this. I salute you.

  • @ivijaydeep
    @ivijaydeep 7 лет назад +1

    This is brilliant teaching, really clear and the right pace to grasp the material!

  • @debasishmishra7149
    @debasishmishra7149 3 года назад

    This is GOLD. Thank you so much! Proud of my alma mater.

  • @debasishdas1656
    @debasishdas1656 3 года назад

    Now I know why are IIT students are so intelligent. Wished the same professor in our class...

  • @tuhinsuryachakraborty
    @tuhinsuryachakraborty 5 месяцев назад

    Amazing lecture with extraordinary clarity.

  • @tomt8691
    @tomt8691 8 лет назад

    nptelhrd is one of the best channels on RUclips!
    Thank you!

  • @hydrowater7965
    @hydrowater7965 10 лет назад +1

    Share brilliance Dr. Love the way you explain different terms in detail. Please keep on adding more of your videos.

  • @48_subhambanerjee22
    @48_subhambanerjee22 2 года назад +1

    🙂🙂 ... Proud Indian math lover

  • @shubhambhardwaj3643
    @shubhambhardwaj3643 4 года назад

    Clearly explained all the concepts, thanks for making the video on such complex topic and making it easier.
    Very helpful.

  • @KunwarArun
    @KunwarArun 3 года назад

    Wonderful...sir. The best video for understanding this concept.

  • @njoy2075
    @njoy2075 3 года назад

    You need patience to watch it .. But it is worth it.

  • @thapelomooi3169
    @thapelomooi3169 6 лет назад +2

    Thank you very much Dr for the much needed clarity.

  • @witsqafa
    @witsqafa 6 лет назад +1

    What a clear explaination. Thanks! I'm very appreciate this, hats off!

  • @sharadchandakacherla8268
    @sharadchandakacherla8268 2 года назад

    Thank you sir. comprehensive, precise and clear.

  • @godfredakrong5279
    @godfredakrong5279 2 года назад

    God bless Prof. Maiti👏👏

  • @papa4669
    @papa4669 3 года назад

    Splendid teaching professor! Thank you so much.

  • @KuldeepSingh-fb6qf
    @KuldeepSingh-fb6qf 7 лет назад

    Superb sir..showing the practical aspect of mathematics...Nice

  • @statisticsbymalik4158
    @statisticsbymalik4158 7 лет назад +1

    Sir your explaining style is very good plz also upload your lectur on wishart distribution as well

  • @TheSetegn
    @TheSetegn 8 лет назад +1

    The best lecture I found useful!

  • @esamhussain183
    @esamhussain183 2 года назад +1

    thank you very much

  • @KayYesYouTuber
    @KayYesYouTuber 5 лет назад +1

    Simply fantastic. Thank you very much

  • @emmanuelkyalo2292
    @emmanuelkyalo2292 3 года назад

    The best Dr ever

  • @EXTRAFUN22
    @EXTRAFUN22 6 лет назад +2

    Vary nice lecture...
    Thank u vary much sir...

  • @MrMkr89
    @MrMkr89 7 лет назад

    This lecture is very good. Very well explained.

  • @subhambasuroychowdhury9698
    @subhambasuroychowdhury9698 2 года назад

    Awesome Explanation.

  • @marufafridi2736
    @marufafridi2736 3 года назад

    Cool!
    This is really great. Thanks, sir!

  • @mogembokhushua7576
    @mogembokhushua7576 2 года назад

    Very nice explanation! Thank you sir!

  • @shiveesingh3541
    @shiveesingh3541 6 лет назад +1

    Very nicely explained. Respect !

  • @grjesus9979
    @grjesus9979 3 года назад +1

    Great lecture sir!

  • @statisticsbymalik4158
    @statisticsbymalik4158 7 лет назад

    Its a very usefull and good lecture, It helps me alot

  • @murchanamadhukalya703
    @murchanamadhukalya703 4 года назад

    Superb ..thank you so much 👍

  • @ncy4647
    @ncy4647 8 лет назад

    Thank you so much! Clear and easy to understand!

  • @jorgec7028
    @jorgec7028 9 лет назад +1

    thank you very much, great explanation!

  • @albertnobleagbewoavi6225
    @albertnobleagbewoavi6225 2 года назад

    Thanks very for this video...it really helped me.
    Dr.
    Please regarding the independence assumption, do we always assume the given variables are independent.
    Hoping to hear from you in your soonest possible time.

  • @MrStudent1978
    @MrStudent1978 4 года назад

    Very nice lecture!

  • @janaosea6020
    @janaosea6020 6 лет назад +2

    amazing! thank you so much!

  • @TheBobbiliFarmer
    @TheBobbiliFarmer Год назад

    Thanks a lot sir.

  • @turtlepedia5149
    @turtlepedia5149 4 года назад

    You sketch pen gives me anxiety but still I manged to watch the whole video

  • @drdoodipala_aaradhya143
    @drdoodipala_aaradhya143 4 года назад

    nice explanation sir

  • @girishc6466
    @girishc6466 3 года назад

    Which playlist contains this video?

  • @krishnaiyer2556
    @krishnaiyer2556 3 года назад

    excellent

  • @nickknauer15
    @nickknauer15 10 лет назад

    Very helpful, thanks!

  • @silentrobi2905
    @silentrobi2905 6 лет назад

    Best tutorial :)

  • @dipankarghosh1456
    @dipankarghosh1456 2 года назад +1

    How to find play list

  • @430yeungki
    @430yeungki 9 лет назад

    thank you very much.

  • @s25412
    @s25412 3 года назад

    5:18 shouldn't the elements of your covariance matrix be squared? Otherwise as it is would be a standard deviation matrix.

  • @litakawulusan2392
    @litakawulusan2392 5 лет назад

    thank you

  • @learnit3679
    @learnit3679 4 года назад

    how on 13:09 when we assume the variables independent many were 0 ??

  • @clusterknight
    @clusterknight 7 лет назад +3

    Amazing explanation. Had to go though many videos in order to get an explanation that makes sense.
    I just have a small question. in the minute 16:57 he talks about matrix multiplication. He mentions (X^T) X is the square of a matrix. Can someone elaborate on this matrix identity. I have tried google but havent seen a straight answer. Thanks in advance!

    • @ishansgyan8665
      @ishansgyan8665 6 лет назад +2

      First search (1)how matrix multiplication works, then search (2)what is a transpose. Then you will realize, if X is a vector of 3 elements [123] then (X^T)X
      is a square of X i.e. [1 4 9]

    • @abhilashsharma1992
      @abhilashsharma1992 5 лет назад

      thanks bro @@ishansgyan8665

    • @chandramoulisanthanam6964
      @chandramoulisanthanam6964 5 лет назад

      ​@@ishansgyan8665
      Your answer is wrong on multiple counts.
      As per your example, if X = [1 2 3], the result of (X^T)X would be a 3x3 matrix, not the elementwise squares. Infact, @clusterknight is right, there is no such identity that (X^T)X is the square of the matrix X. If you calculate what you have said, you will get a square matrix whose diagonal elements will be the elementwise squares. Also, what is present in the exponent is not a simple (X-Mu)^2 , the result that he has shown is not possible without involving the SIGMA matrix.

    • @ishansgyan8665
      @ishansgyan8665 5 лет назад

      @@chandramoulisanthanam6964 in my example I didn't emphasize on matrix structure.
      For diagonal matrix (x'x) will be a matrix with squared of elements of X, this will be obtained by sigma matrix in the video, which will diagonalize it

    • @frankwxu
      @frankwxu 3 года назад

      @@ishansgyan8665 is (x-u) is a diagonal matrix?

  • @GabrielaSilva-ge5fl
    @GabrielaSilva-ge5fl 2 года назад

    what happens if the variables are dependent?

  • @adriandominiquearante3197
    @adriandominiquearante3197 5 лет назад

    Hello, the constant term in your example doesn't appear same to my solution.

  • @sanjaykrish8719
    @sanjaykrish8719 7 лет назад

    Why is sigma 12 =0. How to infer it from the scatter plot

  •  4 года назад

    CLEANNNNNNNNNNNNNNNNNNN

  • @mansursuleiman6845
    @mansursuleiman6845 3 года назад

    I really appreciate this tutorial sir, if p=3 somebody should help me out

  • @aiavicii4243
    @aiavicii4243 4 года назад +1

    05:10 it's σ 21 not σ12

    • @Davalaravikumar-h1w
      @Davalaravikumar-h1w 4 месяца назад

      Covariance of x1,x2 is same as covariance of X2,x1. so we can write σ 21 = σ12

  • @binucy4113
    @binucy4113 7 месяцев назад

    Unfortunately missed to explain the concept

  • @weplays161
    @weplays161 3 года назад

    11:34

  • @travel_ghost22
    @travel_ghost22 3 года назад

    Please improve video quality

  • @CR-iz1od
    @CR-iz1od 9 лет назад +5

    sigma 21 not 12 D: if they are symmetric I guess it doesn't matter but for the sake of math write it right.

    • @CR-iz1od
      @CR-iz1od 7 лет назад

      one year late, and don't remember this comment at all. D: if I was right I guess it doesn't matter but for the sake of the continuum time it right.

    • @GreaterNoidaWale
      @GreaterNoidaWale 6 лет назад

      Doesn't matter sigma 12 will always be equal to sigma 21
      👏😂😂 2 year late..now this comment won't be useful at all .but it will recall you that moment when you spend your time over this video
      Have fun😂😂

    • @hcgaron
      @hcgaron 6 лет назад

      Rakesh Rautela I will come back to comment on this next year.

  • @aiavicii4243
    @aiavicii4243 4 года назад

    lost at 16:53

  • @hanzalajamash5376
    @hanzalajamash5376 6 лет назад

    why sigma ,12 = 0? (6:25)

    • @ramleo1461
      @ramleo1461 6 лет назад

      Hanzala Jamash, because, off diagonal elements in the matrix show covariance I.e how much they're dependent on each other... Since here he took example of independent variables covariance is zero hence sigma 12 is zero

  • @shahriarrahman8425
    @shahriarrahman8425 6 лет назад

    Where is the 'sigma squared' at 10:13 coming from? Can anybody explain?

    • @manishrai3069
      @manishrai3069 6 лет назад

      Sigma squared is nothing but Cov(X,X) in co variance matrix which equals to Var(X) . so for variable X1 its sigma1 squared and for variable X2 its sigma 2 squared