Math Interview Tricks: From Stanford, Harvard, Cambridge to Oxford University✍️🖋️📘💙

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 3

  • @raghvendrasingh1289
    @raghvendrasingh1289 16 дней назад

    xy & x - y are roots of equation
    t^2 - 7 t+6 = 0
    t = 1 , 6
    Case 1
    xy = 1 , x - y = 6
    x^2 - 6 x - 1= 0
    x = 3+√10 , 3 - √10
    y = - 3+√10 , - 3 - √10
    Case 2
    xy = 6 , x - y = 1
    x^2 - x - 6 = 0
    x = 3 , - 2
    y = 2 , - 3
    hence there are four solutions
    (3 , 2) , ( - 2 , - 3)
    (3+√10 , - 3 +√10) & ( 3 - √10 , - 3 - √10)

  • @key_board_x
    @key_board_x 17 дней назад

    x²y - xy² = 6
    xy.(x - y) = 6 → given: x + xy - y = 7 → x - y = 7 - xy
    xy.(7 - xy) = 6 → let: xy = a
    a.(7 - a) = 6
    7a - a² = 6
    a² - 7a + 6 = 0
    Δ = (- 7)² - (4 * 6) = 49 - 24 = 25
    a = (7 ± 5)/2 → recall: xy = a
    xy = (7 ± 5)/2
    First case: xy = (7 + 5)/2 = 6
    x + xy - y = 7
    x + 6 - y = 7
    x - y = 1
    y = x - 1 → restart:
    xy = 6
    x.(x - 1) = 6
    x² - x = 6
    x² - x - 6 = 0
    Δ = (- 1)² - (4 * - 6) = 25
    x = (1 ± 5)/2
    First possibility: x = (1 - 5)/2 = - 2 → where: xy = 6 → y = 6/x → y = - 3
    Second possibility: x = (1 + 5)/2 = 3 → where: xy = 6 → y = 6/x → y = 2
    Second case: xy = (7 - 5)/2 = 1
    x + xy - y = 7
    x + 1 - y = 7
    x - y = 6
    y = x - 6 → restart:
    xy = 1
    x.(x - 6) = 1
    x² - 6x = 1
    x² - 6x - 1 = 0
    Δ = (- 6)² - (4 * - 1) = 40
    x = (6 ± √40)/2
    x = (6 ± 2√10)/2
    x = 3 ± √10
    Third possibility: x = 3 + √10 → where: xy = 1 → y = 1/x
    y = 1/(3 + √10)
    y = (3 - √10)/[(3 + √10).(3 - √10)]
    y = (3 - √10)/[9 - 10]
    y = - 3 + √10
    Fourt possibility: x = 3 - √10 → where: xy = 1 → y = 1/x
    y = 1/(3 - √10)
    y = (3 + √10)/[(3 - √10).(3 + √10)]
    y = (3 + √10)/[9 - 10]
    y = - 3 - √10
    Summarize (x ; y)
    (- 2 ; - 3)
    (3 ; 2)
    (3 + √10 ; - 3 + √10)
    (3 - √10 ; - 3 - √10)

  • @E.h.a.b
    @E.h.a.b 16 дней назад

    x + x y - y = 7 ==> x y+(x-y) = 7
    x^2 y - x y^2 = 6 ==> x y (x-y) = 6
    Let (x-y) = a & x y = b we get
    b+a = 7 -----> [1]
    b.a = 6 -----> [2]
    (a-b)^2 = (a+b)^2 - 4 ab
    (a-b)^2 = 7^2 - 4 * 6 = 25 //From [1] & [2]
    a-b = +/- 5 -----> [3]
    2 b = 7 -(+/- 5) //From [1]-[3]
    **** b = 6 **** OR **** b = 1 ****
    (x-y) =a = 7-b = 7-6 = 1 (x-y) =a = 7-b = 7-1 = 6
    (x+y)^2 = (x-y)^2 + 4 x y (x+y)^2 = (x-y)^2 + 4 x y
    (x+y)^2 = a^2 + 4 (7-a) (x+y)^2 = a^2 + 4 (7-a)
    (x+y)^2 = 1^2 + 4(7-1) (x+y)^2 = 6^2 + 4 (7-6)
    (x+y)^2 = 25 (x+y)^2 = 40
    x+y = +/-5 x+y = +/- 2√10
    2 x = 1 +/-5 2 x = 6 +/- 2√10
    x = (1 +/- 5)/2 x = (6 +/- 2√10)/2 = (3+/-√10)
    x = {3,-2} x = {3+√10, 3-√10}
    y = {3,-2} -1 y = {3+√10, 3-√10} -6
    y = {2,-3} y = {-3+√10, -3-√10}
    Final answer (x,y) = {(3,2), (-2,-3), (3+√10, -3+√10), (3-√10, -3-√10)}