Pi and the Mandelbrot Set - Numberphile

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 1 тыс.

  • @jacoboking36
    @jacoboking36 4 года назад +355

    Pi is like that one uncle who just shows up out of nowhere in every scenario

  • @HansenSWE
    @HansenSWE 9 лет назад +1601

    "This video features Dr Holly Krieger."
    Viral.

    • @HansenSWE
      @HansenSWE 9 лет назад +19

      So wait.
      Math geniuses, gather around, gather around.
      So if the number is within the mandelbrot set... if we do that calculation she was doing, will we never get a number larger than two? Regardless of how many times to do it? We just roll around inside that weird picture?
      Is that the whole point of the mandelbrot set? That we can do an infinite number of calculations without going higher than two?
      That sounds incredibly useful, but I just can't see how right now. It's like a safety mechanism for something. If I'm somewhat correct, how it this applied? It's very interesting

    • @bodhifyer
      @bodhifyer 9 лет назад +2

      +Herr Hansen im no math genius at all, quite the opposite really. If I had to guess at the usefulness of the mandelbrot set, it would be to get a better understanding of the fundamental math of the shape of an abstract object. If it can be mathed then such an object could be a physical object somewhere in the universe which we could study from here on earth

    • @HansenSWE
      @HansenSWE 9 лет назад

      Terrence Zimmermann
      Wow... I feel like less of a man than I did 5 minutes ago. Please tell me this was university physics and it's ok to not understand it perfectly.

    • @HansenSWE
      @HansenSWE 9 лет назад

      ***** Your comment was marked as spam and I had to restore it, brother.

    • @HansenSWE
      @HansenSWE 9 лет назад

      Terrence Zimmermann Wait, you're talking about when magnetic fields change? Like from ferro to para? I've seen some stuff about that. Wish I paid more attention.

  • @KonJamo
    @KonJamo 9 лет назад +937

    You english speakers might not realize this: Mandelbrot actually means Almond bread...to use Almond bread to approximate Pi is a very funny approach to baking :D a fan from Berlin, GErmany

    • @PoweDiePie
      @PoweDiePie 7 лет назад +10

      Wow.

    • @thesentientneuron6550
      @thesentientneuron6550 6 лет назад +15

      I do know a bit of german, but it did not occur to me

    • @Pterry23real
      @Pterry23real 6 лет назад +45

      But Mandelbrot is just a surname. But another relative unusally name for the mandelbrot set is Apfelmännchen (little apple man), so you could bake pi with little apples ;)

    • @earomc
      @earomc 5 лет назад +5

      sockington1 what do you mean

    • @mackan2277
      @mackan2277 5 лет назад

      maybe make some pie out of almond bread :D

  • @rivaldobox
    @rivaldobox 9 лет назад +37

    I really like how energetic she is when explaining things, it makes the video even better.

  • @Nilguiri
    @Nilguiri 9 лет назад +647

    It's amazing how pi can just pop out when you are least expecting it, innit?

    • @aaaab384
      @aaaab384 7 лет назад +17

      It would be if it did. But since it has a simple definition, of course it pops up everywhere. I always expect it to pop up, and I am not amazed when it happens.

    • @Gray-beard
      @Gray-beard 7 лет назад +2

      Lol. Try 'cross training your brain' with Gematria, Pi is everywhere...

    • @FreymanArt2024
      @FreymanArt2024 6 лет назад +25

      It's like the Spanish Inquisition!

    • @soso3792
      @soso3792 6 лет назад +20

      Are you surPised?
      ...sorry my puns are horrible *leaves*

    • @TinyFoxTom
      @TinyFoxTom 6 лет назад

      Just like Garfield on a Monday!

  • @panda4247
    @panda4247 5 лет назад +470

    Holly: "...maybe the least efficient way possible to approximate pi"
    Matt Parker: "challenge accepted"

    • @aaronleperspicace1704
      @aaronleperspicace1704 5 лет назад +7

      😂😂😂😂😂

    • @Thomas_Bergel
      @Thomas_Bergel 4 года назад +12

      panda4247
      Matt would probably get a method that is almost as complex... a classic parker square

    • @gormster
      @gormster 4 года назад +37

      3blue1brown: hold my sliding square

    • @Triantalex
      @Triantalex Год назад

      ??

  • @SOCAKRKA
    @SOCAKRKA 9 лет назад +445

    but what is the connection? i would really love this to be expalined in depth. othervise very nice video

    • @numberphile
      @numberphile  9 лет назад +95

      +SOCAKRKA there's a link to more on Numberphile2 - see the video description

    • @SOCAKRKA
      @SOCAKRKA 9 лет назад +11

      +Numberphile thanks, i guess i have to pay more attention before posting comments :)

    • @axiezimmah
      @axiezimmah 9 лет назад

      +Numberphile that link isn't working though

    • @axiezimmah
      @axiezimmah 9 лет назад

      ***** virus?

    • @ccosborn2000
      @ccosborn2000 8 лет назад +4

      I don't think anyone knows why the iteration counter will stop (ounce the function produces an answer greater than 2), and then recording that counter, why those digits are PI. Incredible. When you find out why let me know.

  • @kevnar
    @kevnar 5 лет назад +88

    I created a game using vectors when I was young. I made a point in the center of a sheet of graph paper and called that "The Sun". It was basically just a source of gravity. Then I chose some other random point on the page and called that a "meteor". Then I assigned some arbitrary motion vector to the meteor. -2x,1y or whatever. Then I'd move the meteor by that much. But every round, you have to adjust the motion vector, + 1 if you're x is negative, or -1 if your x is positive, and likewise with Y. The point was to simulate gravitation toward the sun and get the meteor into an orbit.
    I tried all day to figure out numbers that would make the meteor go into a perfect circle, or at least an ellipse, but all I ever got were these strange, repeating wiggling patterns. Years later, I saw a video on Lissajou curves. Here I thought those curves in my oribits were a failure to create a circle, but all along they were something people were trying to find in and of themselves. It's amazing what curiosity and boredom produces.

    • @qwertyTRiG
      @qwertyTRiG 4 года назад +5

      That's impressive!

    • @ColHogan-bu2xq
      @ColHogan-bu2xq 3 года назад +1

      Problem is : do we really know what the very "nature" of gravitation is ?

  • @yttrv8430
    @yttrv8430 4 года назад +19

    Dr Krieger: Well, I've already used "c", whatever, I'm gonna call this point "c", too.
    Gottsta love people like this.

  • @zh84
    @zh84 9 лет назад +335

    Well, that is extraordinary. I never would have guessed. Will you post a link to an explanation of why this works?

    • @numberphile
      @numberphile  9 лет назад +83

      +zh84 see link to extra footage in the video description

    • @Epoch11
      @Epoch11 9 лет назад +6

      +zh84 I totally agree with you. This seems like witchcraft to me and I would love to see a detailed explanation about why this happens as it does.

    • @strangelyjamesly4078
      @strangelyjamesly4078 9 лет назад +1

      +zh84 It happens because it does. The lower the value of epsilon the closer to the value of Pi the number of steps required to "bust". Coincidence.

    • @NotaWalrus1
      @NotaWalrus1 9 лет назад +10

      +Strangely Jamesly Do you seriously believe that's a coincidence?

    • @moonanddarkness
      @moonanddarkness 9 лет назад +14

      +Strangely Jamesly Damn dude, your teachers must have been really bad. "It happens because it does." It's the most mediocre answer one can get." And I'm surprised you actually believe this is a coincidence, specially when there is a link in the description to a video that explains that this number is actually Pi, not just a coincidence, that if you keep iterating to infinity you will get Pi and it also explains why.

  • @tilmohnen6521
    @tilmohnen6521 5 лет назад +17

    Watch 3Blue1Brown's Video of aproximating pi with block collisions. There are also powers of 100 involved... I wonder whether its actually the same method in disguise...

  • @uritibon17
    @uritibon17 5 лет назад +23

    "This is something that's like, totally natural to be interested in" - Dr Krieger

  • @totallyunmotivated
    @totallyunmotivated 9 лет назад +21

    That woma- I mean that handwriting is perfect. Very legible.

  • @megamillionfreak
    @megamillionfreak 5 лет назад +6

    She is so intelligent. And a great voice and presentation. I could listen to her for hours, days.

  • @pokestep
    @pokestep 9 лет назад +6

    Wow these videos about the Mandelbrot set were great, I finally know what it actually is! Holly Krieger is also great, I loved to see her explain it all, thanks for that. I sure hope to see more in the future!

  • @theulair
    @theulair 9 лет назад +1

    This is the first simple explanation of the Mandelbrot Set and how it is drawn that i have seen in my life. Thank you!

  • @BigBoatDeluxe
    @BigBoatDeluxe 9 лет назад +168

    Amy Adams discussing mathematics. I could get used to this.

    • @ESL1984
      @ESL1984 5 лет назад +17

      *getting arrival flashbacks*

    • @carlos77121
      @carlos77121 4 года назад +5

      Underrated comment here.

    • @Triantalex
      @Triantalex Год назад

      ??

    • @BigBoatDeluxe
      @BigBoatDeluxe Год назад

      @@Triantalex Dr. Krieger kinda favors actress Amy Adams. Kinda sorta.

  • @sk8pkl
    @sk8pkl Год назад +1

    Did you know that if you apply a tangent on both sides of the 2 circles left side of the "heart" shape + a perpendicular to the x axis that is also tangent to the first circle, it makes a triangle. If you give a value of 2 to the height of that triangle, its base is exactly PI... It turns out to be the exact shape of the great pyramid.

  • @weirdshamanwizzard3156
    @weirdshamanwizzard3156 8 лет назад +11

    "This is a totally natural thing to be interested in" this statement just... i don't have any words for it (but i don't disagree)

  • @BobStein
    @BobStein 9 лет назад

    Brady makes a good talk great with his graphics and just the right touch of comments and questions.

  • @michaelbauers8800
    @michaelbauers8800 8 лет назад +9

    A friend and I were delaying going back to programming, so during lunch break, we did a bit of python to show this works in base 2. I will paste the program here. Note that you might see a discrepency in digits due to rounding. Also note I used an alternate starting value.

    • @michaelbauers8800
      @michaelbauers8800 8 лет назад +2

      import cmath
      import math
      def f( c, z):
      return z*z + c
      def doit(c, e):
      i = 0
      temp=f(c,0)
      while abs(temp)

    • @michaelbauers8800
      @michaelbauers8800 8 лет назад +2

      You can modify the value of 20 used in range, and see more digits. For those not familiar with Python, bin gives the binary representation of the number.

  • @stevoofd
    @stevoofd 3 года назад +1

    The mandelbrot set is like the gift that keeps on giving

  • @eddotron1224
    @eddotron1224 9 лет назад +29

    Numberphile's 314th video is about Pi, coincidence? I think not...

  • @sandeepsreehari9188
    @sandeepsreehari9188 4 года назад +2

    How very interesting to see the link between Pi and the Mandelbrot set. It's really about taking particular values for C and Z. Thanks for the informative video.

  • @SeanForeman
    @SeanForeman 4 года назад +3

    Even after watching the additional video this is still baffling amazing to me. I am a software engineer and I find it fascinating that the number of permutations in a particular calculation could result in a known value... but you have to move the decimal place! It feels like there is something else amazing hiding in that idea that could be used to speed up certain calculation by skipping permutations and knowing the overarching value representing iterations.

    • @adheesh2secondsago630
      @adheesh2secondsago630 2 года назад

      No, this is very inefficient, u can't skip anything since output of previous is used as input to second iteration

    • @jonathanford9354
      @jonathanford9354 Год назад

      I think the exact formula is pi = lim e--> 0 of N(e)*sqrt(e). Hence if we divide e by 100, the output "shifts" by one decimal place (My N(e) is defined such that it's equal to N(0.25+e) in the video).

    • @MijinLaw
      @MijinLaw Год назад

      On 3 blue 1 brown they have several videos of pi showing up in weird places, and he manages most times to show how there is some analogy to a circle in the system. e.g. There's one where a heavy object collides with a much lighter one and a wall, with perfectly elastic collisions. As you make the heavy object increasing powers of 10, the total number of collisions tends towards pi times a power of ten. It's mind-blowing, but he manages to explain how it actually can be mapped to movement around a circle.
      In the case of the mandelbrot set, multiplication of complex numbers directly involves movement in a circle, the connection is probably simpler.

  • @KC9MDO
    @KC9MDO 9 лет назад

    The number of steps (N) to get over became closer to representing PI the larger N became. I love this kind of number theory, thanks.

  • @hey8174
    @hey8174 9 лет назад +440

    Dr Holly Krieger is increasing my intelligence.

    • @pacinpm2
      @pacinpm2 9 лет назад +60

      I see what you did here.

    • @Epoch11
      @Epoch11 9 лет назад +42

      +Tucense I'm sure it is expanding.

    • @hey8174
      @hey8174 9 лет назад +41

      +Mark G ᕦ( ͡° ͜ʖ ͡°)ᕤ

    • @iDEaXANA
      @iDEaXANA 9 лет назад +2

      +Tucense i don't see it. mind explaining?

    • @iDEaXANA
      @iDEaXANA 9 лет назад +4

      +Tucense there must be something wrong with me.

  • @meredithhargrave1178
    @meredithhargrave1178 9 лет назад +2

    I'm in algebra 1. This is all way over my head, but I still love watching these videos.

  • @williamlavie8532
    @williamlavie8532 9 лет назад +10

    Great video. I would have been interested to know why this method allows us to approximate pi though...

    • @numberphile
      @numberphile  9 лет назад +6

      +William Lavie extra video on Numberphile2 channel

  • @anraiduine1483
    @anraiduine1483 8 лет назад +1

    Waaaa!! So cool!! What I find especially cool too is the fact that all functions (theoretically) eventually burst out, but the smaller the values, the longer they can be iterated and still remain within 2... It's an asymptote! With infinitely small values being infinitely iterable within the mandelbrot set! And to bring it back to the video, the greater the number of iterations, the closer they come to approximating pi! Insane!!!!

  • @ComicBookGuy82
    @ComicBookGuy82 9 лет назад +140

    0:43 and that's why you should pronounce Z as Zed

    • @geuwglesuxballz6074
      @geuwglesuxballz6074 9 лет назад +4

      +LaVelle I am open to zed being the preferable pronunciation. How was that demonstrated here?

    • @ZPSBestProfileName
      @ZPSBestProfileName 9 лет назад +13

      +GeuwgleSuxBallz It sounded a lot like the c, which, wasn't too confusing, but I could see it irking some students at the back of a lecture hall.

    • @unvergebeneid
      @unvergebeneid 9 лет назад +46

      +LaVelle As a German, I prefer zee British pronunciation as vell.

    • @ZPSBestProfileName
      @ZPSBestProfileName 9 лет назад +2

      Penny Lane Nice.

    • @ZPSBestProfileName
      @ZPSBestProfileName 9 лет назад +1

      Penny Lane Yeah I presumed you were joking about being German.I thought going with French would be better as they literally say "ze", but appreciated the wordplay all the same.

  • @TheArunster
    @TheArunster 5 лет назад +2

    6:14 "That's Cool!" Love the enthusiasm!

  • @SunriseFireberry
    @SunriseFireberry 9 лет назад +52

    Can you use the Mandelbrot Set to approximate e? Or other transcendental numbers?

    • @hyperbole5726
      @hyperbole5726 9 лет назад

      +TimeAndChance nah man, but try series and sequences

    • @hearueszueke6206
      @hearueszueke6206 9 лет назад

      +TimeAndChance maybe...

    • @simoncarlile5190
      @simoncarlile5190 9 лет назад

      +TimeAndChance Try to do it.

    • @allanfloyd8103
      @allanfloyd8103 9 лет назад +9

      +TimeAndChance Doubtful... If you watch the extended explanation, it boils down to the fact that this function approximates the Tangent function, and that is basically made of PI. ;)

    • @canerkorkmaz9428
      @canerkorkmaz9428 9 лет назад +4

      You can approximate ( and find ) using its Maclaurin series ( which is Taylor series at 0).
      e^x = 1+X/1!+x^2/2!+x^3/3!+...
      e = 1 + 1/1! + 1/2! + 1/3! ...

  • @Quantiad
    @Quantiad 9 лет назад +135

    Holly Krieger + Hannah Fry = Heaven

    • @littlemikey46
      @littlemikey46 9 лет назад +7

      +iSquared My two favourite female mathematicians :D

    • @Quantiad
      @Quantiad 9 лет назад +4

      +Jeremy Watts Haha! Mate, that's harsh but hilarious. Both geniuses and both very cute in my opinion.

    • @adymode
      @adymode 9 лет назад +1

      +iSquared So special women, suz Dancso ahhhh

    • @Quantiad
      @Quantiad 9 лет назад

      +Andrew Input Great shout. Another beautiful genius.

    • @whiterottenrabbit
      @whiterottenrabbit 9 лет назад +4

      +iSquared Doctor, Doctor, gimme the news, I got a bad case of lovin' you!

  • @wii3willRule
    @wii3willRule 9 лет назад +17

    Blew my mind... why is it like this?

    • @hearueszueke6206
      @hearueszueke6206 9 лет назад +1

      +wii3willRule we dont know

    • @daedra40
      @daedra40 9 лет назад +4

      +Haris Ziko (PiMathCLanguage) The universe refuses to be all so direct with us!

    • @allanfloyd8103
      @allanfloyd8103 9 лет назад +3

      +wii3willRule Follow up explanation in the description and at the end.

  • @tonyromabarian7535
    @tonyromabarian7535 8 лет назад +1

    great! Why "2"? This is mentioned in the other one on the Mandelbrot set as well. Why 2?

  • @TheMakersRage
    @TheMakersRage 9 лет назад +5

    Least efficient but one of the most interesting ways of approximating pi

  • @margarett.newman7574
    @margarett.newman7574 3 года назад

    Glad to have been shown that. Thank you!

  • @jestemqiqi7647
    @jestemqiqi7647 8 лет назад +23

    "Mandelbrot" is german and means "Almond bread"

    • @jestemqiqi7647
      @jestemqiqi7647 8 лет назад

      gabriel schilhan No.

    • @shorterneilisbored7078
      @shorterneilisbored7078 8 лет назад +3

      Dammit, i'm allergic to numbers.

    • @daleftuprightatsoldierfield
      @daleftuprightatsoldierfield 7 лет назад +1

      Knewity Mandelbrot is also close to an anagram to almond bread. Mandelbrot can be rearranged to almond bre. It is missing an a and a d

    • @shiva_hardly_sarcastic
      @shiva_hardly_sarcastic 6 лет назад +2

      First of all its a name and doesn't has to be translated

    • @amawalpe
      @amawalpe 6 лет назад

      It’s almost an anagram because words have the same root : mandel -> almond ; brot -> bread :)

  • @Virondata
    @Virondata 3 года назад

    This actually blew my mind. WOW thank you for this video.

  • @PhysicsPolice
    @PhysicsPolice 9 лет назад +92

    Wow! Why/how does this trick work?!

    • @numberphile
      @numberphile  9 лет назад +25

      +PhysicsPolice seen the extra footage on Numberphile2?

    • @DrDress
      @DrDress 9 лет назад +7

      +Numberphile
      Y U NO put link at end of video?

    • @colouredmirrorball
      @colouredmirrorball 9 лет назад +6

      +DrDress Y U skip commercial?

    • @whiterunguard7408
      @whiterunguard7408 9 лет назад +15

      3.141592653589793238462643383279502884197169399375105820974944592307816406286 208998628034825342117067982148086513282306647093844609550582231725359408128481 117450284102701938521105559644622948954930381964428810975665933446128475648233 786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496 252451749399651431429809190659250937221696461515709858387410597885959772975498 930161753928468138268683868942774155991855925245953959431049972524680845987273 644695848653836736222626099124608051243884390451244136549762780797715691435997 700129616089441694868555848406353422072225828488648158456028506016842739452267 467678895252138522549954666727823986456596116354886230577456498035593634568174 324112515076069479451096596094025228879710893145669136867228748940560101503308 617928680920874760917824938589009714909675985261365549781893129784821682998948 722658804857564014270477555132379641451523746234364542858444795265867821051141 354735739523113427166102135969536231442952484937187110145765403590279934403742 007310578539062198387447808478489683321445713868751943506430218453191048481005 370614680674919278191197939952061419663428754440643745123718192179998391015919 561814675142691239748940907186494231961567945208095146550225231603881930142093 762137855956638937787083039069792077346722182562599661501421503068038447734549 202605414665925201497442850732518666002132434088190710486331734649651453905796 268561005508106658796998163574736384052571459102897064140110971206280439039759 515677157700420337869936007230558763176359421873125147120532928191826186125867 321579198414848829164470609575270695722091756711672291098169091528017350671274 858322287183520935396572512108357915136988209144421006751033467110314126711136 990865851639831501970165151168517143765761835155650884909989859982387345528331 635507647918535893226185489632132933089857064204675259070915481416549859461637 180270981994309924488957571282890592323326097299712084433573265489382391193259 746366730583604142813883032038249037589852437441702913276561809377344403070746 921120191302033038019762110110044929321516084244485963766983895228684783123552 658213144957685726243344189303968642624341077322697802807318915441101044682325 271620105265227211166039666557309254711055785376346682065310989652691862056476 931257058635662018558100729360659876486117910453348850346113657686753249441668 039626579787718556084552965412665408530614344431858676975145661406800700237877 659134401712749470420562230538994561314071127000407854733269939081454664645880 797270826683063432858785698305235808933065757406795457163775254202114955761581 400250126228594130216471550979259230990796547376125517656751357517829666454779 174501129961489030463994713296210734043751895735961458901938971311179042978285 647503203198691514028708085990480109412147221317947647772622414254854540332157 185306142288137585043063321751829798662237172159160771669254748738986654949450 114654062843366393790039769265672146385306736096571209180763832716641627488880 078692560290228472104031721186082041900042296617119637792133757511495950156604 963186294726547364252308177036751590673502350728354056704038674351362222477158 915049530984448933309634087807693259939780541934144737744184263129860809988868 741326047215695162396586457302163159819319516735381297416772947867242292465436 680098067692823828068996400482435403701416314965897940924323789690706977942236 250822168895738379862300159377647165122893578601588161755782973523344604281512 627203734314653197777416031990665541876397929334419521541341899485444734567383 162499341913181480927777103863877343177207545654532207770921201905166096280490 926360197598828161332316663652861932668633606273567630354477628035045077723554 710585954870279081435624014517180624643626794561275318134078330336254232783944 975382437205835311477119926063813346776879695970309833913077109870408591337464 144282277263465947047458784778720192771528073176790770715721344473060570073349 243693113835049316312840425121925651798069411352801314701304781643788518529092 854520116583934196562134914341595625865865570552690496520985803385072242648293 972858478316305777756068887644624824685792603953527734803048029005876075825104 747091643961362676044925627420420832085661190625454337213153595845068772460290 161876679524061634252257719542916299193064553779914037340432875262888963995879 475729174642635745525407909145135711136941091193932519107602082520261879853188 770584297259167781314969900901921169717372784768472686084900337702424291651300 500516832336435038951702989392233451722013812806965011784408745196012122859937 162313017114448464090389064495444006198690754851602632750529834918740786680881 833851022833450850486082503930213321971551843063545500766828294930413776552793 975175461395398468339363830474611996653858153842056853386218672523340283087112 328278921250771262946322956398989893582116745627010218356462201349671518819097 303811980049734072396103685406643193950979019069963955245300545058068550195673 022921913933918568034490398205955100226353536192041994745538593810234395544959 778377902374216172711172364343543947822181852862408514006660443325888569867054 315470696574745855033232334210730154594051655379068662733379958511562578432298 827372319898757141595781119635833005940873068121602876496286744604774649159950 549737425626901049037781986835938146574126804925648798556145372347867330390468 838343634655379498641927056387293174872332083760112302991136793862708943879936 201629515413371424892830722012690147546684765357616477379467520049075715552781 965362132392640616013635815590742202020318727760527721900556148425551879253034 351398442532234157623361064250639049750086562710953591946589751413103482276930 624743536325691607815478181152843667957061108615331504452127473924544945423682 886061340841486377670096120715124914043027253860764823634143346235189757664521 641376796903149501910857598442391986291642193994907236234646844117394032659184 044378051333894525742399508296591228508555821572503107125701266830240292952522 011872676756220415420516184163484756516999811614101002996078386909291603028840 026910414079288621507842451670908700069928212066041837180653556725253256753286 129104248776182582976515795984703562226293486003415872298053498965022629174878 820273420922224533985626476691490556284250391275771028402799806636582548892648 802545661017296702664076559042909945681506526530537182941270336931378517860904 070866711496558343434769338578171138645587367812301458768712660348913909562009 939361031029161615288138437909904231747336394804575931493140529763475748119356 709110137751721008031559024853090669203767192203322909433467685142214477379393 751703443661991040337511173547191855046449026365512816228824462575916333039107 225383742182140883508657391771509682887478265699599574490661758344137522397096 834080053559849175417381883999446974867626551658276584835884531427756879002909 517028352971634456212964043523117600665101241200659755851276178583829204197484 423608007193045761893234922927965019875187212726750798125547095890455635792122 103334669749923563025494780249011419521238281530911407907386025152274299581807 247162591668545133312394804947079119153267343028244186041426363954800044800267 049624820179289647669758318327131425170296923488962766844032326092752496035799 646925650493681836090032380929345958897069536534940603402166544375589004563288 225054525564056448246515187547119621844396582533754388569094113031509526179378 002974120766514793942590298969594699556576121865619673378623625612521632086286 922210327488921865436480229678070576561514463204692790682120738837781423356282 360896320806822246801224826117718589638140918390367367222088832151375560037279 839400415297002878307667094447456013455641725437090697939612257142989467154357 846878861444581231459357198492252847160504922124247014121478057345510500801908 699603302763478708108175450119307141223390866393833952942578690507643100638351 983438934159613185434754649556978103829309716465143840700707360411237359984345 225161050702705623526601276484830840761183013052793205427462865403603674532865 105706587488225698157936789766974220575059683440869735020141020672358502007245 2256326513410559240190274216248439140359989535

    • @gckbowers411
      @gckbowers411 9 лет назад

      +Whiterun Guard The first decimal place is wrong.

  • @venkatbabu186
    @venkatbabu186 4 года назад

    A knot is where -7/4 is on a plane. A cross over. Circles are always circle just that reflection maps. A sphere is an infinite circle of circles. Other structures are derived entity.

  • @DimitrisAndreou
    @DimitrisAndreou 9 лет назад +9

    They forgot to explain why it is so!

  • @Tertious89
    @Tertious89 9 лет назад

    I love complex numbers. There are just do many interesting and thought provoking applications when they are involved.

  • @TheRocketMaster2013
    @TheRocketMaster2013 9 лет назад +3

    Numberphile! Congratulations on 314 videos!

  • @venkateshbabu1504
    @venkateshbabu1504 4 года назад

    A surface addition to line. The maps and the iterations are curves of the links. Meaning waves protracted. Pi is a wave ratio of matter.

  • @nousefor1
    @nousefor1 9 лет назад +6

    3:19 That's what I always tell the ladies about my Mandelbrot Set :\

  • @brazenzebra
    @brazenzebra 3 года назад

    A beautiful video gift from a math angel of heaven.

  • @DrNPCabd
    @DrNPCabd 9 лет назад +44

    Only Mathematics are more beautiful than Holly...

  • @nintender6333
    @nintender6333 7 лет назад

    Thats absolutly awesome! Im 17 and I write about the mandelbrot Set for school (I have about 18 pages which is more than enough), but I think about getting this into my seminar work

  • @rorycollier7521
    @rorycollier7521 7 лет назад +19

    Never been so heartbroken to see a ring on someone's finger. :(
    On topic though, super interesting video. I love this channel! :)

  • @laurapelayo7250
    @laurapelayo7250 5 лет назад +1

    I wish you guys had a podcast 😭

  • @Harlequin314159
    @Harlequin314159 9 лет назад +11

    Hang on..... but why!?

  • @PhilBagels
    @PhilBagels 9 лет назад

    Without having seen the further explanation on numberphile2, my intuitive guess is that the limit as epsilon approaches 0 on N(c)*sqrt(epsilon) is pi. So if epsilon is 0.00004, N(c) will be approximately pi/0.002 or about 1570.

  • @kemkyrk8029
    @kemkyrk8029 9 лет назад +3

    I'm disturbed with that... I mean, the number of required steps to get bigger than 2 is some kind of "continuous" (if it takes n steps to a number to blow out, then you can get another number very close for which it will take exactly n+1 steps to blow out). Therefore, for every integer n, there is a real number which blows out of 2 in exactly n steps. Since you can do that for every integer 3, 31, 314, 3141, 31415, you can find a sequence of real number whose number of steps converge to π*10^smth. I think it's interesting that this sequence is just some kind of .25 + 10^-2n but, it's not that magical that it converges to π, since you know that such a sequence exists.
    You can do that with every real number...

    • @kemkyrk8029
      @kemkyrk8029 9 лет назад

      Oh ok, so then, I can call that wonderful :))))))

  • @Max_Flashheart
    @Max_Flashheart 7 лет назад

    Mandelbrot has a breakdown and heads for Pi = mindblown

  • @alainischileno
    @alainischileno 9 лет назад +5

    I wrote a simple program and it only works up to 0.2500000001, only by adding two zeros, and only when it's followed by a 1 each time. For instance: 0.2501 gives us 312, and 0.250001 gives us 3140, but 0.25001 is 991. And putting 0.250002 instead of 0.250001 gives us 2219. Can someone prove me wrong?

    • @RaidChampion
      @RaidChampion 9 лет назад +4

      +Alain Rochette It does work. Formally, it is (epsilon^(1/2))*N(c) which converges to pi. If you use 0.25001 for example, epsilon = 0.00001 and N(c) = 991, then epsilon^(1/2)*N(c) = 3.1338 ...

    • @MichaelS-vy1ku
      @MichaelS-vy1ku 9 лет назад

      +Alain Rochette Harmonic oscillation?

    • @alainischileno
      @alainischileno 9 лет назад

      RaidChampion Thanks! they didn't explain that in the video, which is why i was confused.

    • @alainischileno
      @alainischileno 9 лет назад

      RaidChampion tried it again and this time it works pretty much up to 0.2500000000001, anything smaller than that and the approximation actually gets further away, do you know why this is?

    • @linuslee6314
      @linuslee6314 9 лет назад +10

      +Alain Rochette my guess would be that that's the limit of precision of whatever programming language you're using. If you want to get more accurate, you might try using eg MATLAB or octave for mathematical computation.

  • @djkafab4boll500
    @djkafab4boll500 8 лет назад

    My husband, Dave Boll, discovered Pi & the Mandelbrot Set back in 1991. Aaron Klebanoff did the proof in 2001.

  • @WahranRai
    @WahranRai 5 лет назад +3

    The sexiest teacher in youtube !

  • @samueldevulder
    @samueldevulder 9 лет назад +1

    Ah Holly... I could spend hours iterating her videos again an again :) I wish there could be more of them on youtube.

  • @Christian-Rankin
    @Christian-Rankin 9 лет назад +244

    *insert filthy comment about obvious pretty women*

    • @Peteminator
      @Peteminator 9 лет назад +62

      +Christian Rankin The maths is not the only beautiful thing in the video.

    • @Holexification
      @Holexification 9 лет назад +133

      +Christian Rankin I though pretty smart women were imaginary, turns out they are real! Gosh this is complex...

    • @asdmla8777
      @asdmla8777 9 лет назад +60

      +Christian Rankin 3:20

    • @gumenski
      @gumenski 9 лет назад +8

      +Christian Rankin Annnd you were the only one to be that guy. Nice one

    • @TheLuxma
      @TheLuxma 9 лет назад +1

      +Aelianus Lucius Decimus +1

  • @Felice_Enellen
    @Felice_Enellen 3 года назад

    TL;DW: The "last" digit of π, in base 10, is the number of iterations, modulo 10, at (¼,0) in the Mandelbrot set.

  • @BigNickontheDrum
    @BigNickontheDrum 4 года назад +7

    Dr. Holly Krieger: Mandelbae

  • @life1lover
    @life1lover 7 лет назад

    Hi Numberphile set :), I have a math challenge for you. The directions of the problem are like this: Take any map and draw a circle on it anywhere. Prove that at any moment in time there exists a pair of diametrically opposite points A and B on that circle corresponding to locations where the temperatures at that moment are equal. Hint: Use intermidiate value theorem

  • @mana24
    @mana24 9 лет назад +50

    i am here for the beautiful person in the vid

  • @JimGiant
    @JimGiant 8 лет назад

    The Mandelbrot set is a set of points for which the iterated function of Z = Z^2 + C doesn't escape towards infinity where Z starts at 0 and C is the position on the complex plane.
    We know that if Z >2 this will happen since the next iteration will be >4 and the addition of C can no longer fight the exponential growth however if I was to use a different fractal such as Z^1.2 + C this wouldn't necessarily be the case and often renderers allow you to change the overflow value anyway. For these reasons "escape towards infinity" is a better explanation than >2 IMIO.
    [Edit] Ok using 2 as the overflow for calculating pi. Fair enough]

    • @JimGiant
      @JimGiant 8 лет назад

      +Jim Giant Tried that method for calculating pi. It's interesting that it works but year not very efficient to say the least.

  • @michaelbauers8800
    @michaelbauers8800 8 лет назад +4

    I read that a student ( at the time of discovery) discovered this. Dave Boll

    • @djkafab4boll500
      @djkafab4boll500 8 лет назад +1

      You are correct, Michael. My husband, Dave Boll, discovered this in 1991 as a grad student in Fort Collins. Aaron Klebanoff did the proof in 2001.

    • @michaelbauers8800
      @michaelbauers8800 8 лет назад +1

      The proof is worth looking at, found it online some time ago. I don't pretend to fully understand it, but I always like trying to understand what I can :)

    • @ccosborn2000
      @ccosborn2000 8 лет назад

      I believe that this wasn't found until a computer was used to do boo-coo calculations and color all those little dots depending on how fast the iteration goes to infinity.

  • @maxgoof8605
    @maxgoof8605 7 лет назад

    Three questions:
    1) Does any variation of 0.25000...001 work, or is there a lot of cherry picking going on?
    2) Is there any explanation as to why pi?
    3) If instead of using the decimal system, you were to do things in base 8, where the cusp is 0.2oct, and used numbers of the form 0.2000...001, would you get an approximation of pi in base 8? Why or why not?

  • @681726
    @681726 9 лет назад +5

    The question is "why?"

    • @saparchitekt
      @saparchitekt 9 лет назад +1

      JFK

    • @bytefu
      @bytefu 9 лет назад +1

      +benheideveld Jelly Fish Kebab?

  • @michaelb2434
    @michaelb2434 7 лет назад

    Here's a math question for you: How can you isolate pi in so many different equation? Pi = area of a circle and a right circular cone and it could equal a sphere and a cylinder. then you can make physics equations with pie in them equal different variables. So I've concluded pi is just the middle of a see-saw between equations with spirals.

  • @escraftTH
    @escraftTH 9 лет назад +125

    I HATE THE SOUND OF SHARPIES ON PAPER!!! SOMEONE PLEASE HELP ME. AHHHH!!!!

    • @erelde_
      @erelde_ 9 лет назад +8

      +3.141S92653S29793238462643383279502884I97I69E99
      You're on the wrong channel then ^^ (truth is, I dislike it as well)

    • @Cr42yguy
      @Cr42yguy 9 лет назад +9

      +3.141S92653S29793238462643383279502884I97I69E99
      you should really think about that "S2" in your name and maybe change it to "S8" ;)

    • @hearueszueke6206
      @hearueszueke6206 9 лет назад

      +3.141S92653S29793238462643383279502884I97I69E99 yes PI, the sound is annoying, but it is a great video, or not?

    • @dlwatib
      @dlwatib 9 лет назад +2

      +3.141S92653S29793238462643383279502884I97I69E99 Mute!

    • @MyRegularNameWasTaken
      @MyRegularNameWasTaken 9 лет назад

      I agree with Cr42yguy. 3.141 S! 92653 S2!! 979...
      Try 3.141592653589793238462643383279502884197169399375105820974944 or so.

  • @FlyingSavannahs
    @FlyingSavannahs 4 года назад

    This simple computational recipe has sat on the real number line for all to see. It took Mandelbrot study to reveal it! Can anyone say, "Serendipity?"

  • @niteexplorer9934
    @niteexplorer9934 9 лет назад +4

    i'm depressed now

  • @andersonantunes4257
    @andersonantunes4257 9 лет назад +2

    This is actually really cool!

  • @idriscarney5299
    @idriscarney5299 4 года назад +3

    Too high for this

  • @louisduong2090
    @louisduong2090 5 лет назад +1

    Holly is amazing!

  • @suave319
    @suave319 9 лет назад +11

    I need an explanation for this sorcery!

    • @manudelmarche
      @manudelmarche 7 лет назад +2

      You just opened the door for conspiracist to tell us that the illuminati have taken off from Planet Nibiru and are headed towards planet earth in an attempt to ensure that 911 was actually a fractal simulation based on alien lasers fired from their bases located on the dark side of the moon and reflected by a giant dyson sphere operated by monsters who escaped the CERN evil portals after scientists have run within the LHC a PI approximation algorithm based on the mandelbrot set drawn by protons shot at each other :-D

  • @Xubono
    @Xubono 4 года назад

    Nice concept. The reality though is that the closer you get to 1/4, and the more steps it takes for your result to exceed 2, the harder it will be to accurately count the number of steps. Each time the number is squared, the number of significant digits in that number DOUBLES. So after 10 steps, you’ll be dealing with at least a 1024 digit number. Long before this point you’ll be getting “rounding errors”, and a “loss of significance” when trying to represent these numbers on a binary computer using floating point numbers with a finite number of bits.

  • @aakksshhaayy
    @aakksshhaayy 8 лет назад +29

    Damn it someone put a ring on that lol

    • @misterhat5823
      @misterhat5823 8 лет назад +5

      And here I thought I was the only one who looked.

    • @jairochang9505
      @jairochang9505 6 лет назад +1

      already has one 💍 02:01

  • @tonniebaumeister
    @tonniebaumeister 2 года назад

    At x=-.75 all y's escape to infinity except y=0. When the starting-y (b) = 1/r whereas r goes to infinity the moment in which y goes to infinity is (Pi)*r.

  • @Tobbzn
    @Tobbzn 9 лет назад +6

    But... why?

  • @jetzeschaafsma1211
    @jetzeschaafsma1211 9 лет назад

    You can also approximate pi by dropping a toothpick on a tile floor and counting the number of times the toothpick crosses a tile boundary.

  • @OpenMind3000
    @OpenMind3000 9 лет назад +26

    nice sache, aber sie sollte aufjedenfall mal Mandelbrot ein bisschen besser aussprechen. :D

    • @TheSammy2310
      @TheSammy2310 9 лет назад +7

      +OPEN MIND Simon, du hier? :D

    • @PurzelPadauZ
      @PurzelPadauZ 9 лет назад +3

      +OPEN MIND Ausserdem könnte sie mal aufhören, Pi wie Kuchen auszusprechen.

    • @Serfuzz
      @Serfuzz 9 лет назад +3

      +OPEN MIND Weisst du denn auch, wie er seinen Namen ausgesprochen hat? Er war immerhin Franzose.

    • @okaydokey7852
      @okaydokey7852 9 лет назад +2

      +Serfuzz ja danke ich nehm einen Hamburger ohne Gürkchen, ne große Pommes und zwei Eimer Popcorn.

    • @expertizzlist
      @expertizzlist 9 лет назад +9

      +OPEN MIND Oh Gott und wieder ein deutsches Dummbrot, das unbedingt auf deutsch kommentieren muss - und sich natürlich noch über die Aussprache eines "deutschen" Namens aufregen muss. Komm, geh Pillen flitschen und Traumtagebuch schreiben, aka deine Kernkompetenzen. Dumme Sau.

  • @dozer1642
    @dozer1642 4 года назад

    Dr Holly you are amazing.

  • @dentalhams
    @dentalhams 8 лет назад +3

    Are those lightsaber earrings?

  • @TheOutZZ
    @TheOutZZ 9 лет назад

    WOHO :D! A Mandelbrot set video on my B-DAY!

  • @random554468
    @random554468 9 лет назад +7

    I understand that the mandelbrot set uses c and z as variables, but it is extremely confusing when talking about it and you are pronouncing both varables as "see" instead of "see" and "zed". And then using another c as the outside variable.

    • @geuwglesuxballz6074
      @geuwglesuxballz6074 9 лет назад +4

      +random554468 That would be confusing, but I have yet to encounter anyone that pronounces z as see. Since this speech impediment is apparently quite rare, this is a non-issue as demonstrated in this video by a person who pronounces them quite distinctly, as is nearly always encountered.

    • @unvergebeneid
      @unvergebeneid 9 лет назад +9

      +random554468 c is see and z is zee. I didn't have any trouble telling the difference and English is not my native language.

    • @omp199
      @omp199 9 лет назад +2

      +Penny Lane But /s/ and /z/ are distinct phonemes in your native language, aren't they? (My understanding is that "reisen" and "reißen" make a minimal pair which establishes the existence of distinct phonemes /s/ and /z/ in German. However, I have seen this disputed, so feel free to disagree.)
      It might be that they are not distinct phonemes in +random554468's native language.
      In any case, it is neither polite nor helpful, when someone has difficulty with something, to reply, "Oh, really? Well, _I_ have no difficulty with it whatsoever!

    • @Sixsince-dd2eu
      @Sixsince-dd2eu 7 лет назад +2

      c is see and z is zee. I didn't have any trouble telling the difference and English is my native language.

  • @Peter-pp6kj
    @Peter-pp6kj 9 лет назад +1

    Please more videos with Holly! :-)

  • @troll00712
    @troll00712 9 лет назад +8

    Guess i have to wait fro the English translation to come out.

  • @jeffspc88mx
    @jeffspc88mx 5 лет назад

    Dear Humanity, Everything is connected to everything else. - Love, Science.

  • @ewouthonig371
    @ewouthonig371 4 года назад +4

    What would be someone's motivation to figure out and study something that is of absolutely no value in the real world?

  • @thebaultmichael1399
    @thebaultmichael1399 7 лет назад

    Wrote a bit of matlab to see where this was going. Got the following results:
    Epsilon | Pi
    1 | 2
    10^-2 | 3
    10^-4 | 3.12
    10^-6 | 3.14
    10^-8 | 3.1414
    10^-10 | 3.14157
    10^-12 | 3.141625
    10^-14 | 3.1430912
    10^-16 | 3.0201983
    for epsilon=10^-16 it took 20 min of computation. The 3 last values might be off because of rounding up numbers bigger than 32 bits.
    Oddly, only even numbers of negative powers of ten gave a coherent approximation. It's a shame they didn't explain why it converges in such a way, it may have also explained this.
    Note: if epsilon=10^(-i) the programme gave pi=N*10^(-(i/2))

  • @webmediafactors4
    @webmediafactors4 9 лет назад +27

    i couldn't concentrate on the maths because she is far too pretty. I'll just have to watch it a few times.

  • @alihijazi4451
    @alihijazi4451 7 лет назад

    I giggled a lot at the end of the video, from pure joy. That's AWESOME. I love math.

  • @chapinward
    @chapinward 9 лет назад +5

    by god, she is beautiful..

  • @lockythindromen3974
    @lockythindromen3974 9 лет назад +2

    +1 for recommending Sage!

  • @Fresse
    @Fresse 9 лет назад +5

    How do I conquer this fair maiden?

    • @shameekbaranwal
      @shameekbaranwal 9 лет назад +15

      +idkagoodusernameyet just find the last digit of pi

    • @quoabell
      @quoabell 9 лет назад +1

      +SKBytes it's 4.

    • @shameekbaranwal
      @shameekbaranwal 9 лет назад

      Are you sure? I mean, i need to know how

    • @shirankao69
      @shirankao69 9 лет назад +1

      +SKBytes Alright, here you go. The last digit of pi is 0. Yes, I can prove it.

    • @shameekbaranwal
      @shameekbaranwal 9 лет назад

      Prove

  • @Lolwutdesu9000
    @Lolwutdesu9000 8 лет назад +2

    You guys notice how they kept using the phrase "bust out of the mandelbrot set"...
    "bust out of"...
    "bust". The reference is clear.

  • @marcotizzano77
    @marcotizzano77 7 лет назад +4

    Dr Holly Krieger, I'm in love with you 😍😁

  • @55chh
    @55chh 8 лет назад +1

    Interesting, my ability doesn't allow me to immediately understand why this should be so, but I have an inkling.