RAGAS - Evaluate your LangChain RAG Pipelines

Поделиться
HTML-код
  • Опубликовано: 27 ноя 2024

Комментарии • 36

  • @melika1725
    @melika1725 Месяц назад

    I am working on RAG systems for my master thesis. Thank you for this video. really thank you!

    • @codingcrashcourses8533
      @codingcrashcourses8533  Месяц назад

      You´re welcome. On my channel I have more RAG videos and I also offer an Advanced RAG course on Udemy :)

  • @seallyolme
    @seallyolme 8 месяцев назад +1

    This is awesome! Great and clear video :)

  • @mosheragomaa2
    @mosheragomaa2 6 месяцев назад

    So simple, helpful and clear! Very interesting.
    Thanks for the video

  • @M10n8
    @M10n8 8 месяцев назад

    Excellent timing ;-) Thanks for video

  • @MMO-g2w
    @MMO-g2w 8 месяцев назад +1

    Bro is on fire this month!

    • @codingcrashcourses8533
      @codingcrashcourses8533  8 месяцев назад

      You guys give me so many requests on topics 😀

    • @MMO-g2w
      @MMO-g2w 8 месяцев назад

      @@codingcrashcourses8533 i was, i am and i will support you till the end. Ur videos helped my sooooooooooo much.

  • @maxlgemeinderat9202
    @maxlgemeinderat9202 8 месяцев назад +1

    Nice one! Also a big fan of RAGAS, however there are still many bugs that come with RAGAS, especially when trying to evaluate with local llms

    • @codingcrashcourses8533
      @codingcrashcourses8533  8 месяцев назад

      yes, it´s still far away from perfect, but good that frameworks like these are developed

  • @andreypetrunin5702
    @andreypetrunin5702 8 месяцев назад

    Огромное спасибо за видео!!

  • @Challseus
    @Challseus 8 месяцев назад

    Another banger! :)

  • @robertputneydrake
    @robertputneydrake 8 месяцев назад +1

    Nice, Meister! Machste irgendwann das Thema Code RAG ggf. mit Knowledge-Graphen?

    • @codingcrashcourses8533
      @codingcrashcourses8533  8 месяцев назад

      Currently no plans on working with knowledge graphs, since I don´t have experience with these. But maybe in the future :)

  • @nguyenquynghia9755
    @nguyenquynghia9755 5 месяцев назад

    I switched to using RecursiveCharacterTextSplitter, but my context relevance is still low. Do you know why?

  • @kumarrajaakula9064
    @kumarrajaakula9064 2 месяца назад

    I want to know one thing that even the ground truth is generated by an LLM, how can we determine whether it is correct for a particular query?

    • @codingcrashcourses8533
      @codingcrashcourses8533  2 месяца назад

      You probably want to create your own dataset for that. I also dont want the llm to define a ground truth

  • @alexandershevchenko4167
    @alexandershevchenko4167 8 месяцев назад

    Thank you for the video!
    Yeah, It will be really intereseting to know how to perform RAGAS in CI/CD pipline. Can you record video for this one please? Will be really helpful

  • @mohammed333suliman
    @mohammed333suliman 5 месяцев назад

    Great video , thank you

  • @GenerativeAI-Guru
    @GenerativeAI-Guru 8 месяцев назад

    I was waiting for this thank you so much, is it possible to add how to evaluate accuracy using F1 scoring or other methods

    • @codingcrashcourses8533
      @codingcrashcourses8533  8 месяцев назад +1

      Not out of the box, F1 scores can be easily caculated with pandas (to_pandas) like this: F1 = 2*precision*recall/(precision+recall)

    • @GenerativeAI-Guru
      @GenerativeAI-Guru 8 месяцев назад

      @@codingcrashcourses8533 thanks

    • @maxlgemeinderat9202
      @maxlgemeinderat9202 8 месяцев назад +1

      you could also calculate the RAGAS score which is the mean across all metrics

  • @fire17102
    @fire17102 8 месяцев назад

    It's there an ai pipeline to auto optimize the rag quality? Seems like the obvious next step...
    Great video 🙏👍

    • @codingcrashcourses8533
      @codingcrashcourses8533  8 месяцев назад

      You probably would have to build something like that on your own, since there are so many ways how a pipeline could look like. You could also work on your prompt and so on.

    • @fire17102
      @fire17102 8 месяцев назад

      @@codingcrashcourses8533 I'd always want to manually make changes I think are best, but I'd still like to see a full matrix of hyperperameters to remove alot of the guess work. Chunk size for example. More over I'd like to benchmark everything and add scoring functions. For example a score for fact checking - see Lucidate's last video.
      And also IndyDevDan last video battle royal of models, I suggested to combine it with something like you do with rag params and what I suggest for full pipeline benchmark with ai suggested optimization

  • @doggydoggy578
    @doggydoggy578 3 месяца назад

    Does this need an open ai key ? i have zero in my account

    • @codingcrashcourses8533
      @codingcrashcourses8533  3 месяца назад

      @@doggydoggy578 yes

    • @doggydoggy578
      @doggydoggy578 3 месяца назад

      @@codingcrashcourses8533 did you mention this in this video ? i think it's super important

    • @doggydoggy578
      @doggydoggy578 3 месяца назад

      @@codingcrashcourses8533 very nice, not at all an important detail to conveniently leave out