Can you find area of the Yellow Quadrilateral? | (Semicircle) |

Поделиться
HTML-код
  • Опубликовано: 7 ноя 2024
  • Learn how to find the area of the Yellow Quadrilateral. Important Geometry and Algebra skills are also explained: Quadrilateral; Thales' theorem; Pythagorean theorem; Triangle area formula; circle area formula. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find area of the Yellow Quadrilateral? | (Semicircle) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindQuadrilateralArea #YellowQuadrilateral #Triangle #Semicircle #GeometryMath #PythagoreanTheorem #ThalesTheorem
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    Andy Math
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Комментарии • 61

  • @arthurschwieger82
    @arthurschwieger82 День назад +2

    I just looked over at your subscriber count and I see that you are well over 400K!!! That is fantastic. Keep up the great work.

    • @PreMath
      @PreMath  День назад +1

      Thank you so much for the support! It means a lot to me! 🙏
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 День назад +5

    A = ½πR² = 578π cm² --> R= 34cm
    Pytagorean theorem:
    c² = (2R)² - 32² --> c= 60cm
    Pytagorean theorem:
    x² = c² - 36² --> x= 48cm
    Quadrilateral area :
    A = A₁ +A₂ = ½bh + ½bh
    A = ½ 60*32 + ½36*48
    A = 1824 cm² ( Solved √ )

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @sanaraza4635
    @sanaraza4635 День назад +2

    Thank you for sharing ✨️

    • @PreMath
      @PreMath  День назад

      You are very welcome!😀
      Thanks for the feedback ❤️

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip 20 часов назад +1

    Thank you sir thanks for sharing🎉❤

    • @PreMath
      @PreMath  5 часов назад

      You’re very welcome! Thanks for watching. ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 День назад +1

    This video is much more helpful than the comments. And this is for future practice!!!

    • @PreMath
      @PreMath  День назад

      I'm glad you found it useful! 👍
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 День назад +1

    Thank you!

    • @PreMath
      @PreMath  5 часов назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 День назад +1

    Great!! 👍

    • @PreMath
      @PreMath  День назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @maysounhejazy7056
    @maysounhejazy7056 День назад +1

    Amazing

    • @PreMath
      @PreMath  5 часов назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @joeschmo622
    @joeschmo622 День назад +2

    ✨Magic!✨
    Yeah, needed a paper and pen for this one to do the squares and squareroots...

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for the feedback ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 12 часов назад +1

    Thanks Sir
    That’s very nice and enjoyable
    With my respects
    ❤❤❤❤

    • @PreMath
      @PreMath  5 часов назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @alexundre8745
    @alexundre8745 День назад +2

    Bom dia Mestre
    Grato pela Aula

    • @PreMath
      @PreMath  День назад

      Bom dia querido!😀
      De nada!
      Obrigado pelo feedback ❤️

    • @alexundre8745
      @alexundre8745 День назад

      @PreMath Boa noite Mestre
      Estou aprendendo a matéria
      Essa também acertei graças a Deus e ao.Sr

  • @TimothyCizadlo
    @TimothyCizadlo День назад +2

    Once you have the diameter of 68 and the right triangle for which it is the hypotenuse, it can be faster to note that after a quick common factoring that 68 and 32 can be reduced to 4*17 and 4*8, and 17 and 8 are two elements of the Pythagorean Triple of (8,15,17). This gives you the BD length of 60, which can then be fed into triangle BCD, for which we have another Pythagorean triple 12*(3,4,5), which gives the missing DC length of 48.
    I have found that in many of these types of problems knowing the first five or so primitive (irreducible) Pythagorean triples (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), & (20, 21, 29) often offers shortcuts to find lengths.

    • @PreMath
      @PreMath  День назад

      You are correct; recognizing Pythagorean triples can be very useful!
      Thanks for the feedback ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l День назад +1

    Very nice sir❤❤

    • @PreMath
      @PreMath  5 часов назад

      I'm glad you liked it! 😄
      Thanks for the feedback ❤️

  • @himo3485
    @himo3485 14 часов назад +1

    AO=OB=r r*r*π*1/2=578π r=34 AB=2r=68
    DB=√[68²-32²]=60 DC=√[60²-36²]=48
    Quadrilateral area = 36*48*1/2 + 60*32*1/2 = 864 + 960 = 1824

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День назад +1

    The area of the semicircle is πr²/2=578, from which r=34 we have BD=√(68²-32²)=60, and we have CD=√(60²-36²)=48, from which the area of the quadrilateral ABCD is equal to (32*60)/2+(48*36)/2=1824.

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 День назад +1

    Radio =34---> DB=√(68²-32²)=60 ---> CD=√(60²-36²)=48 ---> Área sombreada =(32*60 +36*48)/2 =1824 ud².
    Gracias y saludos

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @maysounhejazy7056
    @maysounhejazy7056 День назад +1

    Can I ask about the graphic tablet and the application you used

    • @PreMath
      @PreMath  5 часов назад

      MacBook pro along with Canva, Camtasia techsmith.
      Thanks for asking😀

    • @maysounhejazy7056
      @maysounhejazy7056 4 часа назад

      @ thanks for your response

  • @quigonkenny
    @quigonkenny 19 часов назад +1

    Semicircle O:
    A = πr²/2
    578π = πr²/2
    1156π = πr²
    r² = 1156
    r = √1156 = 34
    Draw BD. As A and B are points on the diameter and D is a point on the circumference, then ∠BDA = 90°.
    Triangle ∆BDA:
    BD² + DA² = AB²
    BD² + 32² = 68²
    BD² = 4624 - 1024 = 3600
    BD = √3600 = 60
    Triangle ∆BCD:
    BC² + CD² = DB²
    36² + CD² = 60²
    CD² = 3600 - 1296 = 2304
    CD = √2304 = 48
    The area of quadrilateral ABCD is equal to the sum of the areas of triangles ∆BDA and ∆BCD.
    Quadrilateral ABCD:
    A = 60(32)/2 + 48(36)/2
    A = 960 + 864 = 1824 sq units

    • @PreMath
      @PreMath  5 часов назад

      Excellent
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 17 часов назад +1

    r^2 = 578(2) = 1156 = 34
    diameter = 68
    68^2 - 32^2 = (100)(36) = 60^2
    60^2 - 36^2 = 96(24) = 48^2
    area = 60(32)/2 + 36(48)/2 = 960 + 864 = 1824

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 3 часа назад

      @PreMath Thank YOU 🙂

  • @MrPaulc222
    @MrPaulc222 День назад +1

    Full circle area would be 1156pi, so r = sqrt(1156) = 34.
    ADB is a right triangle with a side of 32 and a hypotenuse 68 (due to 2r).
    68^2 - 32^2 = 3,600, so DB = 60.
    ADB has area of 60*16 = 960 un^2.
    Now for BCD: 3,600 - 36^2 = 3,600 - 1296 = 2304.
    sqrt(2304) = 48
    24*36 = 864 un^2
    864 + 960 = 1824 un^2
    I have now looked. Yes, we followed the same path.

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 День назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the diameter d=2r of the semicircle:
    A = πr²/2 = π(d/2)²/2 = πd²/8
    578π = πd²/8
    4624 = d²
    ⇒ d = √4624 = 68
    According to the theorem of Thales the triangle ABD is a right triangle. Therefore we can apply the Pythagorean theorem:
    AB² = AD² + BD²
    BD² = AB² − AD² = d² − AD² = 68² − 32² = 4624 − 1024 = 3600
    ⇒ BD = √3600 = 60
    The triangle BCD is a also right triangle, so we can apply the Pythagorean theorem again:
    BD² = BC² + CD²
    CD² = BD² − BC² = 60² − 36² = 3600 − 1296 = 2304
    ⇒ CD = √2304 = 48
    Now we are able to calculate the area of the yellow quadrilateral:
    A(ABCD) = A(ABD) + A(BCD) = (1/2)*AD*BD + (1/2)*BC*CD = (1/2)*32*60 + (1/2)*36*48 = 960 + 864 = 1824
    Best regards from Germany

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 День назад +2

    S=1824

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 День назад +1

    Thale's ale ...the elixir of the gods! 🙂

    • @PreMath
      @PreMath  День назад +1

      Right on!😀
      Thanks for the feedback ❤️

  • @sergioaiex3966
    @sergioaiex3966 День назад +2

    Solution:
    Semicircle Area = 578π = πr²/2
    πr² = 1156π
    r² = 1156
    r = 34
    Thales Theorem (according to this theorem, the angle ADB is a right Angle) and applying Pythagorean Theorem in triangle ABD, at the same time, we have:
    DB² + 32² = 68²
    DB² = 4624 - 1024
    DB² = 3600
    DB = 60
    In next step, applying Pythagorean Theorem in triangle BCD, we have:
    DC² + 36² = 60²
    DC² = 3600 - 1296
    DC² = 2304
    DC = 48
    Quadrilateral Area (QA) = Area ABD + Area BCD
    QA = ½ 32 . 60 + ½ 36 . 48
    QA = 960 + 864
    QA = 1824 Square Units ✅

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz День назад +1

    34 is the radius, sqrt(68^2-32^2)=60, sqrt(60^2-36^2)=48, therefore the answer is 1/2×(32×60+36×48)=1824.😅

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️

  • @nenetstree914
    @nenetstree914 День назад +1

    1824

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz День назад +1

    Plenty of computation 😢

    • @PreMath
      @PreMath  День назад +1

      Yes!
      Thanks for the feedback ❤️