a physicist's favorite "FUNCTION"

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 227

  • @drjmc1
    @drjmc1 Год назад +446

    Michael "This is really sketchy", Physicists "That's the most rigorous maths i have ever seen" 🙂

    • @QuantumHistorian
      @QuantumHistorian Год назад +39

      Correction: most rigorous maths I've stayed awake for :p

    • @pedrosso0
      @pedrosso0 Год назад +5

      @@QuantumHistorian Same thing

    • @Harkmagic
      @Harkmagic Год назад +13

      Physics is all sketchy math. My physics degree really left me disillusioned now that I knew how physics was really done.

    • @dragonmudd
      @dragonmudd Год назад +23

      As a physicist, we worked through these definitions/derivations in undergrad, in some of our earliest classes for our major. We do lots of rigorous math.

    • @InternetCommenters
      @InternetCommenters Год назад +3

      Engineers*

  • @MrFtriana
    @MrFtriana Год назад +176

    Yes, the Dirac distribution is one of the greatest tools on the physics bag. It's good that Michael talk about it

    • @Ablatius
      @Ablatius Год назад +11

      Physics, signal processing, so many applications 😊

    • @cv990a4
      @cv990a4 Год назад +2

      @@Ablatius It's a distribution with measure 1 at zero.

    • @skalderman
      @skalderman Год назад

      @@cv990a4So?

  • @GreenDayFanMT
    @GreenDayFanMT Год назад +50

    MS Physics here, great video. We really love the dirac delta die as well as Heaviside. Most of the time we avoid calling it a function or distribution. In the day to day flow, we just say Dirac delta

    • @MrFtriana
      @MrFtriana Год назад +3

      True

    • @douglasstrother6584
      @douglasstrother6584 Год назад +3

      "The Forgotten Genius of Oliver Heaviside: A Maverick of Electrical Science" ~ Basil Mahon

    • @TranquilSeaOfMath
      @TranquilSeaOfMath 8 месяцев назад +1

      ​@@douglasstrother6584 Thanks for the book recommendation.

  • @obiske0
    @obiske0 Год назад +82

    As a physicist the limit of a Gaussian always seemed like the best way to think of it to me. Seems to make everything rhyme a little better.

    • @obiske0
      @obiske0 Год назад +18

      Also thinking of it as a continuous Kronecker delta makes a lot of hard calculations really easy.

    • @karolakkolo123
      @karolakkolo123 Год назад +8

      I mean yeah it makes much more sense for it to be symmetric, because otherwise there is ambiguity of what happens when you take the integral that has 0 as one of its endpoints. It makes sense to make it symmetric and then specify precisely 0- or 0+ as one of the limits, and that decides whether or not the integral covers the entire dirac delta "spike". Then the dirac delta sits between 0- and 0+. It's actually a really important discussion point in signal processing

    • @emanuellandeholm5657
      @emanuellandeholm5657 Год назад +3

      As a non physicist my favorite limit has to be delta(x) = lim eps->0 Ai(x/eps) / eps. Ai() as in the Airy function.

    • @Chiborino
      @Chiborino Год назад

      I also haven't seen it defined in the way he used at the start in any of the books I had, it was always just "take a bell curve and squeeze it" because usually that's what it's being used for.

    • @ascanius398
      @ascanius398 Год назад +1

      In my mind it’s delta(X)=limit as h->0 1_[-h/2,h/2]/h, with 1_[] being the indicator function. So it’s kinda the average value of a function at a infinity small Intervall around zero.

  • @BorisTreukhov
    @BorisTreukhov Год назад +64

    You should do some distribution theory or dive into Sobolev spaces and PDEs I'd eagerly watch
    P.S. Also liked applying of analysis tools in this video.

  • @vbazilevich
    @vbazilevich Год назад +1

    Claim done at 8:03 does not seem to be persuasive enough because the integral is (indeed) bounded from above by M/2n, but if we open the paranthesis we will have just M/2 in place of the integral which doesn't have to be equal to 0

  • @davidgillies620
    @davidgillies620 Год назад +23

    When we were doing the deep dive into the delta and other such "functions" during my physics degree, we derived it in terms of Fourier transforms of sinc functions. This turns out to be very illuminating when it comes to the thorny question of what it means when we say a system has an observable, and in particular why the Heisenberg Uncertainty Principle is a _necessary_ consequence of taking observables as conjugate pairs. This was the same approach that we took when applying it to the Shannon sampling theorem and why the Nyquist criterion applies.

  • @Javy_Chand
    @Javy_Chand Год назад +1

    First time reading the description. Truly a sight...

  • @JCCyC
    @JCCyC Год назад +4

    I learned it in the Electronics Engineering course. The teachers called it the "impulse" function. It's the idealization of a very short duration, high energy signal spike.

  • @roberttelarket4934
    @roberttelarket4934 Год назад +23

    A pure mathematician's greatest enemy is a physicist.

    • @Facetime_Curvature
      @Facetime_Curvature Год назад +9

      Can't we just agree that pi=3=e?

    • @audience2
      @audience2 Год назад +1

      I can think of worse enemies, like those incorrectly saying 2 + 2 = 5.

    • @mohammadabdulla8601
      @mohammadabdulla8601 Год назад +2

      @@Facetime_Curvature 🤣🤣🤣🤣🤣🤣 there's even worse pi = 22/7 😆

    • @OuroborosVengeance
      @OuroborosVengeance Год назад

      You just destroyed the universe with that

    • @roberttelarket4934
      @roberttelarket4934 Год назад

      @@OuroborosVengeance: Who Cares?! Not I!!!

  • @goodplacetostop2973
    @goodplacetostop2973 Год назад +16

    20:02 Palindromic timestamp

  • @rogierbrussee3460
    @rogierbrussee3460 Год назад +3

    Here is a mathematically rigorous way to think about \delta. It is a _measure_ on the real numbers R.
    A measure µ on R is just a function that assigns to a subset A of R a positive number µ(A), its "size" (strictly speaking it only does for subsets that are not too "wild", so called measurable subsets, e.g. all subsets that you can make using countable union, countable intersection and complement operation starting with intervals). The delta measure, or rather the delta measure \delta_a(dx) for a number a \in R is very simple
    \delta_a(A) = 1 if a \in A and 0 otherwise
    Standard arguments then tell that one can integrate (measurable) functions on R to get
    \int_R f(x) \delta_a(dx) = f(a)
    "By abuse of notation" one writes \delta(x - a)dx. This is strictly speaking incorrect (the technical terminology is "\delta_a(dx) is not absolutely continuous with respect to Lebesgue measure dx").
    Michael's presentation shows that if A is reasonable (e.g. an interval) there exists sequence of "weight" functions w_n(x) such that _for fixed A_
    \lim_{n -> ∞} \int_A w_n(x - a) dx = \delta_a (A) = 1 if a in A and 0 otherwise.
    And by "standard" arguments
    \lim_{n -> ∞} \int_R f(x) w_n(x - a) dx = \int f(x) \delta_a(dx) = f(a)
    Therefore if you know what it really means \delta(x -a)dx is often a convenient short hand.
    P.s If you want to learn about measures and why they are useful there is a very nice and no-nonsense You tube series by @brightsideofmaths
    ruclips.net/video/xZ69KEg7ccU/видео.html

  • @General12th
    @General12th Год назад +1

    Hi Dr. Penn!
    Great chalkwork as always! Very clean lines.

  • @violetfactorial6806
    @violetfactorial6806 Год назад +1

    The dirac function is incredible, not just mathematically but in practical terms. It blew my mind, it's one of those really cool things to learn about.

  • @parameshwarhazra2725
    @parameshwarhazra2725 Год назад +7

    This is the function I was dying for to see Michael sir doing an analysis on it. Love you sir!!!❤❤

  • @camilocagliolo
    @camilocagliolo Год назад +2

    As a physicist, thanks for acknowledging that it isn't thaaaat sketchy after all! p.s.: Love your videos

  • @manucitomx
    @manucitomx Год назад +9

    Gnarly and sketchy rolled into one.
    Thank you, professor.

  • @tommihommi1
    @tommihommi1 Год назад +4

    A nice sample of something that seems quite convoluted but turns out rather nice and discrete.

  • @GandalfTheWise0002
    @GandalfTheWise0002 Год назад +31

    Speaking as a physicist, it's definitely a useful short-hand notation that saves a lot of writing during various derivations. Sort of like just using d/dx f(x) on various functions without fully writing out and calculating d/dx f(x) = lim(h->0) (f(x+h)-f(x))/h each time you take a derivative. I found the delta function particularly useful using Green's functions in electromagnetics problems which I did my dissertation on and later professionally.

    • @pedrosso0
      @pedrosso0 Год назад +11

      The thing is though, d/dx is a notation which means exactly that, but the delta "function" is a bit more ambiguous

    • @TheGlassgubben
      @TheGlassgubben Год назад

      ​@@pedrosso0, in what way exactly is it ambiguous? Come on mathematicians, admit that you simply like to be a little bit obtuse some times.

    • @pedrosso0
      @pedrosso0 Год назад

      @@TheGlassgubben Like to be what?

    • @pedrosso0
      @pedrosso0 Год назад

      @@TheGlassgubben ​ Like to be a little what?
      As for answering the question, it's ambiguous where you're taking the limit if you're not explicitly stating it. Now, I don't know what context it's used however if the delta function is used as f(δ(x)), since the lim part is taken out it isn't clear whether it's: lim f(δ(x)) or f(lim δ(x)) which for certain f and x can prove to be a big difference.

    • @TheGlassgubben
      @TheGlassgubben Год назад +1

      @@pedrosso0, from Camebridge dictionary: "obtuse adjective [...] stupid and slow to understand, or unwilling to try to understand". In this case it was mostly meant in jest.
      That issue doesn't affect anything too often when we're limited to physically relevant problems. If we ever find out that we have to decide on one definition we can care about it then.

  • @VickoHelium
    @VickoHelium Год назад +13

    Following the physicist's math series, I think it could be interesting to have a video about the Baker-Campbell-Haussdorf formula. Maybe by showing that exp(A)exp(B) does not equal exp(A+B) if A and B are two matrices with non-zero commutator.

    • @profdc9501
      @profdc9501 Год назад

      Yeah, and the Magnus expansion is a very interesting application of this, which is the expansion of the evolution of a process in commutators.
      en.wikipedia.org/wiki/Magnus_expansion

    • @MrFtriana
      @MrFtriana Год назад

      Definitively. The construction of the S matrix in scattering theory rest in some way in this formula

  • @chrayma
    @chrayma Год назад +1

    Reminds me of my physics studies 40 years ago !! Thank You Michael. We see the link between math and physics. PAM Dirac was a misunderstood genius.

  • @tahirimathscienceonlinetea4273

    Hi, Michael you reminde me 21 years back when I used to take distribution course involving this one thanks

  • @MyOneFiftiethOfADollar
    @MyOneFiftiethOfADollar Год назад +1

    I seem to remember this when dealing with the convolution of functions

  • @mikejurney9102
    @mikejurney9102 Год назад

    Is the Dirac delta function a continuous version of the Dirac Measure? The Dirac Measure is equal to 1 if there exists an element inside a specified set, or region, or interval. And the Dirac Measure is 0 if there is no element inside the specified region. So, in the Dirac Measure the element can act like a variable that is free to take on values inside the interval of the set and values outside the set as well. When values are inside the interval that specifies the set, then the Dirac Measure is 1, otherwise not. On a discrete number line, the set can be specified at one point along the number line. And the element can take on discrete values along the number line. Only when the element number is equal to the set number will the Dirac Measure equal one, but when the numbers are not equal, the Dirac measure is zero. This turns the Dirac Measure into the Kronecker delta. We can do a summation of the Kronecker delta over the entire number line. And it will add up to 1, because only in one place will the two numbers be equal. This looks like a discrete version of the integration of the Dirac delta function.

  • @QuantumHistorian
    @QuantumHistorian Год назад +40

    Never have I been so insulted by an intro that's so correct. This "function" came up a lot in my work generally, including in one section of my PhD. In some strange edge cases situations, I had to integrate \delta(x) from 0 to infinity, which - after digging around in the literature, turns out to not really be defined. I ended up calling it 1/2, both from the geometric intuition, and because it made it agree with the solution I got from a completely different method to the same underlying problem (a method that was only applicable in those strange edge cases).

    • @GeekProdigyGuy
      @GeekProdigyGuy Год назад +4

      it would've been faster to ask somebody from the maths department :)

    • @rarebeeph1783
      @rarebeeph1783 Год назад +5

      if the integral of f(x) \delta(x) dx is defined to be f(0), then wouldn't the integral of \delta(x) dx on its own just be 1? since f(x) = 1 would give that integral

    • @QuantumHistorian
      @QuantumHistorian Год назад +6

      @@GeekProdigyGuy I tried lol. Their answer was something along the lines of "it's not a real function, so it's not properly defined outside of the right sort of integral, so we don't care". I essentially just extended the definition of the dirac delta so that the different answers I had could be written as one formula, rather than having separate cases.
      @ The integral from -infinity to infinity of the dirac delta is 1. But I was integrating over half of that. If you take the diract delta as limit of the gaussian in the video, you'd get a half. If you take the step function definition, you'd get 1. You can easily construct an another limit definition of the distribution to give you 0, or in fact any value between 0 and 1. In different contexts, it's usually taken to be 0, 1/2, or 1, which ever is most convenient. It's not a big deal, it's fundamentally just notation.

    • @praharmitra
      @praharmitra Год назад +1

      @@QuantumHistorian what exact topic was your Ph.D. on?

    • @profdc9501
      @profdc9501 Год назад

      Usually the answer is going to depend on how the delta function was derived as the answer to a formula in the first place, and often the correct result is going to depend on the symmetry and dimensionality of the function that is being integrated against the delta function. In a course I try to show for example, how because the delta function is the result of a limiting process, one may have to include that process in the problem in which one applies the delta function.

  • @danielvieira8374
    @danielvieira8374 Год назад

    In the place of integration by parts, you can use directly fundamental calculus theorem, which requires only continuity of f

  • @parameshwarhazra2725
    @parameshwarhazra2725 Год назад +6

    That's why physics texts just writes that further calculations are left to the masochists!

  • @holyshit922
    @holyshit922 Год назад

    11:55 Here I can see Gamma function after using ttat integrand is even on interval symmetric around zero
    and substitution t= -nx^2

  • @ericsmith1801
    @ericsmith1801 Год назад

    Then you multiply it by (x-1)(x-2)(x-3)...
    In the convolution integral to get the signal. Useful and simple.

  • @VideoFusco
    @VideoFusco Год назад +1

    if you want to use an approach similar to the first in the video, it would be better to consider the Dirac delta as the limit of a step function that is n/2 between -1/n and +1/n, so that it is symmetric around 0.

  • @QuantumHistorian
    @QuantumHistorian Год назад +10

    If you want an idea for a follow up question, a common post-grad interview question is _"What is the integral of f(x) times the _*_derivative_* of the dirac delta function (from -infinity to +infinity)?" It can be done by just doing integration by parts and the defining properties of the delta function, but it might be fun to do rigorously using a limit definition of the delta function.

  • @alipourzand6499
    @alipourzand6499 Год назад +1

    By definition, the dirac function is the Fourier transform of a constant function such as f(x)=1. Starting from the Fourier transform of a step function and then finding the limit when the width of the step goes to infinity.

  • @kristianwichmann9996
    @kristianwichmann9996 Год назад +5

    I'm glad you didn't go through the whole making topologies from infinite families of seminorms ... and whatever else was needed for distribution theory. It's been 20+ years and was by far the hardest math class I ever took - The details are a bit fuzzy.

    • @mohammadabdulla8601
      @mohammadabdulla8601 Год назад

      It's one of the most difficult topics especially when it comes to understanding the Topology in the test spaces!

  • @Nikolas_Davis
    @Nikolas_Davis Год назад +59

    Physicist here, don't shoot, I know it's not really a function. Can't we all just get along? 🙂
    (Once, in my senior year as an undergrad, a mathematically-minded colleague gave a small lecture, properly introducing distributions. It was intriguing, and not that hard to understand, really. But I only really understood the subject when I studied quantum mechanics, and specifically the problem of wavefunction normalization in the continuum case)

    • @QuantumHistorian
      @QuantumHistorian Год назад +8

      That's why we don't talk about continuum wave functions, we just close our eyes and hope that linear algebra works the same in finite and infinite dimensions :p

    • @sieni221
      @sieni221 Год назад +3

      Its a function but not locally lebesque integrable function

    • @MrFtriana
      @MrFtriana Год назад +3

      Don't forget the electrodynamics and how the dirac delta distribution appears in the construction of the Green functions (Aka propagators in QFT)

  • @carstenmeyer7786
    @carstenmeyer7786 Год назад

    Nice motivational video for the power (and beauty) of "Schwarz' Distribution Theory". Sadly, if you _really_ want to take the deep dive eliminating the "sketchy parts", you need to encounter
    - the space of test functions (and its topology based on convexity)
    - actually define distributions as functionals from the space of test functions to ℂ
    Only then will things like the limit at 3:10 actually make sense -- and yes, "Distribution Theory" borrows heavily from "Functional Analysis", making it an advanced subject in a mathematician's masters program.

  • @wyboo2019
    @wyboo2019 Год назад

    the integral he's writing at 11:07 looks really similar to the integral definition of the Gamma Function and i'm now super curious as to what the connection between the two could be

  • @DaddyRaiden
    @DaddyRaiden Год назад +1

    No way you uploaded this just a few hours after I had to submit my homework using this...

    • @MichaelPennMath
      @MichaelPennMath  Год назад

      I planned it out specifically to affect you, in this way, personally. ;)
      -Stephanie
      MP Editor

  • @Anonymous-zp4hb
    @Anonymous-zp4hb Год назад

    This is the first time I've seen this delta.
    It made a lot more sense when you brought out the shrinking bell-curve.
    Good stuff. Would definitely watch more videos on sketchy maths in physics :)

  • @mohammadabdulla8601
    @mohammadabdulla8601 Год назад +2

    There is a reason why theory of distributions was introduced.
    The tedious approach using test spaces and distributions is definitely the way to go for the study of dirac but it involves a lot of pure math knowledge.

  • @mircopaul5259
    @mircopaul5259 Год назад

    Quality content as always. Great job!

  • @VideoFusco
    @VideoFusco Год назад +1

    I believe that the Dirac delta could be defined as a normal function in the context of non-standard analysis. In particular as a normalized Gaussian that has the infinitesimal standard deviation (and therefore the maximum of infinite ordinate).

  • @jerrysstories711
    @jerrysstories711 Год назад +1

    The "sketchy" source I got that definition from was several physics professors. They usual followed it up with a warning that "Some effete mathematicians will have a problem with this definition, but..."

  • @ЯрославБалицький-ъ6л

    I'm a Physicist, and I love the delta function so much!!!

  • @douglasstrother6584
    @douglasstrother6584 Год назад +1

    Us Physicists need to write a song, "My Delta Function", to the tune "My Generation".

  • @kluaoha
    @kluaoha Год назад +1

    I read the title and immediately knew it would be dirac delta.

  • @gasun1274
    @gasun1274 Год назад +1

    as an EE undergrad, i've seen levels of non-rigor you never would have thought possible

  • @soyoltoi
    @soyoltoi Год назад +1

    You should collaborate with ThatMathThing, an analyst who claims they are functions!

  • @MattMcIrvin
    @MattMcIrvin Год назад +2

    You do usually at least get a disclaimer of the nature of "This is not really a function--it's a *distribution*." Though there may not be a lot of discussion of what that means.
    Physicists use convolutions of functions a LOT, and it turns out to be very useful to have a "function" that will just pick out a certain value of another function by convoluting them. They also think a lot about locality and conservation laws, and the Dirac delta is often a convenient tool for *restricting* an interaction in some way, by locality or to obey a conservation law.

  • @crosseyedcat1183
    @crosseyedcat1183 Год назад

    Pretty sure this is an engineer's favorite function too. I'm doing a PhD in control theory and this function becomes your entire life.

  • @annaairahala9462
    @annaairahala9462 Год назад

    It was always taught as a "function", so not an actual function, but it's still a useful tool to have

  • @КириллЙошкин
    @КириллЙошкин Год назад +1

    It doesn't seem right to swap the sum the limit and the integral for (2m - 1)!!/(2n) ^m because it doesn't converge uniformly

  • @naturallyinterested7569
    @naturallyinterested7569 Год назад +4

    Can you maybe do a video on what happens if the delta distribution lies on the boundary of the integration domain D? I think it should be provable that if the boundary itself is differentiable, it should be 1/2 f(x) for x on del D. This would also clear up the "sketchy physicist's" definition of the Heaviside theta function, which some (including me) take to have a value of 1/2 at 0. (sry if what I'm saying doesn't make sense, I'm only a second year)

    • @spacejunk2186
      @spacejunk2186 Год назад

      The Heaviside function being a 1/2 at zero reminds me of Fouriere series.

  • @emanuellandeholm5657
    @emanuellandeholm5657 Год назад

    I think they call objects like these "distributions". Fascinating little things.

  • @reeeeeplease1178
    @reeeeeplease1178 Год назад

    Doesn't 10:20 only work for finite bounds as the bounds are independent limits?

  • @epicmarschmallow5049
    @epicmarschmallow5049 Год назад

    I remember this coming up when I took a quantum mechanics class during my undergrad. The lecturer just kinda pulled it out of nowhere, admitted it wasn't really a function and then just rolled with it

  • @markerena2274
    @markerena2274 Год назад +3

    Nice video, but I have 2 questions: why could you just swap the "limit" and integral and what happens if f is not differentiable(Your proof only works when f is differentiable)? And what is an actual rigorous way to define this function(I'm guessing it's just an abuse of notation, because the sequence of functions you defined is not pointwise convergent in 0)?

    • @amdi363
      @amdi363 Год назад +5

      The answer to the first question is simple: you can't. I generally love Michael's work, but what he has done here is as sketchy as defining the Dirac Delta as he pointed out in the start of the video. Using the Lebesgue measure for integrating, which is what is assumed here, you can't swap limit and integral in this case. In fact, if you go to the extended reals, defining a function as taking the value "infinity" makes sense, but if it takes that value only on a set of measure zero (like just one point) it's integral is not changed. Thus, the Lebesgue integral of a Dirac's Delta is zero without debate.
      The trick is, however, not to use the Lebesgue Measure, but changing it. Thus, the "integral of a function times the Dirac Delta under the Lebesgue measure" is in reality an abuse of notation to refer to "the integral of a function under the discrete measure" that assigns zero to every point except for zero, and assigns one to zero. So, in reality, the Dirac Delta is not a function and is nothing similar to a function, but an object that means: change the measure here when integrating this function.
      That, or the integral can also be seen abuse of notation to refer to the Dirac Delta distribution aplied to the function, too, which is a totally different object, and steps into a topic that needs more introduction. I recommend you check it out tho, especially the Lebesgue spaces, the concept of dual space and why the dual of certain spaces is not what we think to be. It is quite mind opening

  • @TheLowstef
    @TheLowstef Год назад

    Yay, physics!!!
    Also, the video description is... interesting. Could it be that Stephanie the Editor is having a little too much fun??? Naaah... 😂

  • @homerthompson416
    @homerthompson416 Год назад

    It was so cool finally seeing the Dirac Delta rigorously defined and used without any hand waving in a functional analysis course I did on c0ursera a few years ago back when they had awesome free classes. Had used it all the time self studying physics but never came across it in my undergrad math degree.

  • @lego312
    @lego312 Год назад +1

    I think it makes sense to think of Dirac delta as the limit of PDFs, you're finding the expected value of some function with probability \delta_n(x)

    • @Sugarman96
      @Sugarman96 Год назад

      Thinking of it as the Gaussian distribution with the variance approaching zero does make a lot of sense, it also clicks when looking at the characteristic function.

  • @MartinWawro
    @MartinWawro Год назад +2

    This has to be the nicest explanation of the Dirac delta I have seen so far, seasoned with a bit of mathematician humor towards those sketchy physicist 🙂 *tips hat*

  • @Blackmuhahah
    @Blackmuhahah Год назад

    As a physicist it's nice to know that the way we learnt about it formally was a bit more rigorous than these "sketchy" constructions. (Mainly by always saying that this is only valid if the function f is "nice" enough and that in the physical world all function can be assumed to be "nice" enough)

  • @spacejunk2186
    @spacejunk2186 Год назад

    I live the dirac FUNCTION because of how well it FUNCTIONS.

  • @ericsmith1801
    @ericsmith1801 Год назад

    Engineers use a form of the Dirac function where 1, x=0 in signal processing.

  • @emilianotrujillo3380
    @emilianotrujillo3380 Год назад +3

    I recently saw a small proof of the fact that de Dirac delta "function" is not a function using Lebesgue integrals. Do you think you can do a couple of videos talking about Lebesgue integrals and their uses?

    • @MK-13337
      @MK-13337 Год назад +1

      In essence every integral you do is a Lebesgue integral, and integrals are pretty useful.

  • @marcosolza3698
    @marcosolza3698 Год назад +1

    Nice video and nice GPT4 greetings 😂

    • @MichaelPennMath
      @MichaelPennMath  Год назад

      I'm not using GPT4 to write the descriptions. I'm a weirdo. That's all I need.
      -Stephanie
      MP Editor

    • @marcosolza3698
      @marcosolza3698 Год назад +1

      @@MichaelPennMath no offence, just joking 👍

  • @LeetMath
    @LeetMath Год назад +1

    what if you used hyperfinite numbers / infinitessimals?

  • @coaldustmarauder2071
    @coaldustmarauder2071 Год назад

    ah yes
    The Dirac delta function. I recently learned about it in diff.eq. in relarion to lagrange transformations

  • @MacHooolahan
    @MacHooolahan Год назад

    All this makes me crave a full MP "Math Major" series on {checks early 90s sketchy physics notes...} Fourier Transforms. Always struck my (then) young brain as a profound impact of maths on physics.

  • @MK-13337
    @MK-13337 Год назад

    All kinds of limits and infinite sums flying out of all kinds of integrals in this one. Seems appropriate for the material 😅

  • @odysseasv7734
    @odysseasv7734 Год назад +1

    That was so cool!

  • @JuanGarcia-qg4bo
    @JuanGarcia-qg4bo Год назад

    Here’s the thing, it’s ok for calculations to be sketchy up to the point you get an actually interesting result, then you go back and try to patch things up. I mean, QFT has amazing prediction power and it’s all sketch, you’ll get a million bucks if you show yang mills actually makes sense.

  • @ianthehunter3532
    @ianthehunter3532 Год назад +1

    What does otherwise mean in a piecewise function?

  • @Sugarman96
    @Sugarman96 Год назад +12

    Electrical engineers also love the Dirac Delta function, it's very crucial for evaluating a system's transfer function for example.

    • @tommihommi1
      @tommihommi1 Год назад +3

      also the very core of digital signal processing

    • @Sugarman96
      @Sugarman96 Год назад +2

      ​@@tommihommi1 yup, you need to Delta function to even consider thinking about the Fourier Transform.

  • @minamagdy4126
    @minamagdy4126 Год назад

    I believe you can be less restrictive with your constraint on f(x) when deriving the integral with the delta function for d_n(x) = n for 0

    • @aadfg0
      @aadfg0 Год назад

      It does, by existence of limit theres some e such that |x| < e -> |f(x)-f(0)| < 1 so we can take N > 1/e and M = |f(0)|+1. But the derivative can be problematic, so integration by parts isn't exactly the best way. In fact, we don't need a condition on the derivative if the problem is done properly.

  • @names9769
    @names9769 Год назад

    Yo, Michael, any other fantastic math channels on youtube similar to yours?

  • @petterituovinem8412
    @petterituovinem8412 Год назад +1

    I wish I knew when it was a good place to stop

  • @katrinschenk5721
    @katrinschenk5721 Год назад +1

    Don't diss my delta, bro!

  • @ravenecho2410
    @ravenecho2410 Год назад

    hope he hits that its like a limit as sigma goes to zero of a mean 0 sigma normal distribution, coming from actuarial/stats this makes the most sense to me *shrug*

  • @user-hz4cy6sd3o
    @user-hz4cy6sd3o Год назад

    I love this sketchy function

  • @PennyAfNorberg
    @PennyAfNorberg Год назад

    I rember trying a function series for d_sub_n such as d_sub_n(0)=0, but i don't remember if it gave the same result.

  • @benjamingross3384
    @benjamingross3384 Год назад +1

    I've always enjoyed irritating mathematicians by calling it a function. Good times...

  • @johanngambolputty5351
    @johanngambolputty5351 11 месяцев назад

    People have commented about measures, but again, it feels like the dirac delta "function" is trying to be the density of a point distribution, which doesn't make a whole lot of sense for discrete distributions. However it makes complete sense as a measure; if my point mass is at 0, then the dirac measure gives any region that contains 0 the weight 1, including really tiny sets around 0. Density is a somewhat relative thing, it tells you how much more mass one region has than another, but its overkill here since a set either contains all the mass or none of it, and the ratio is degenerate. That said, dirac measures kinda seem to turn Lebesgue integrals into sums, and the dirac function seems to perform the same role. It makes sense that it crops up in physics, because you might have mass or charge "distributed over" or localised at a point instead of regions of non-zero area...

  • @nahblue
    @nahblue Год назад

    Now make a good pairing of the dirac delta distribution with fourier and laplace transforms and you're an engineer! :)

  • @christoskettenis880
    @christoskettenis880 Год назад

    The engineers' favourite function!

  • @reeeeeplease1178
    @reeeeeplease1178 Год назад

    For the "first way" at 8:30 he assumes f being continous (as he pulls the limit inside) but assumes that f' is bounded earlier
    If f is cont., isnt f' automatically bounded?

    • @reeeeeplease1178
      @reeeeeplease1178 Год назад

      I guess we only need f to be continous at 0

    • @adamnevraumont4027
      @adamnevraumont4027 Год назад

      Continuous don't have to be differentiable, let alone have a bounded derivative!

  • @timanderson5717
    @timanderson5717 Год назад

    What if you use the continuous version of the function with the Ackermann function?

  • @guyzan
    @guyzan Год назад

    The engineer's second best tool after excel.

  • @IsYitzach
    @IsYitzach Год назад

    I would have gone with the Breit-Wigner distribution (delta(x)=lim_{gamma->0)gamma/(pi(x^2+gamma^2)) for the continuous version instead of the Gaussian distribution. But, that's because I'm a nuclear theorist. The guys in condensed matter would probably prefer the Gaussian distribution. It's all the same. There are several continuous distributions where a zero limit or infinity limit produce the Dirac delta.

  • @jceepf
    @jceepf 4 месяца назад

    I was expecting a delta-epsilon proof. Do you need differentiability?

  • @KitagumaIgen
    @KitagumaIgen Год назад

    This is opening the door to the annoying part of physics - we "happily" jump between being lax (it's fine, physics makes sense no mathematical peculiarities will come and bite us) and being rigorous (to get it right we need to be cautious about everything)

  • @snowy855_
    @snowy855_ Год назад +1

    very unhinged description as always😂

  • @__hannibaal__
    @__hannibaal__ Год назад

    Yeah i remember that Wolf function . Using limit … and … how we implement it programming languages… lll

  • @ErsagunKuruca
    @ErsagunKuruca Год назад

    Problem: Dirac delta function is not really a function. It only works if you integrate it.
    Solution: define it in terms of hyperreal numbers:
    delta(x) = {omega if 0

  • @ericsmith1801
    @ericsmith1801 Год назад

    Called the unit impulse.

  • @xenofurmi
    @xenofurmi Месяц назад

    The function of existance. You exist here!

  • @babybeel8787
    @babybeel8787 Год назад +1

    Interesting "function"

  • @tomoki-v6o
    @tomoki-v6o Год назад

    how distributions are related to least squares method?

  • @ddognine
    @ddognine Год назад

    IIRC Hilbert famously said that the math of physics is too hard for physicists. Also, I find it a little annoying that it is attributed to Dirac, but I guess Fourier and others have plenty of things already named after them.

  • @jackvankaam1433
    @jackvankaam1433 Год назад

    At 16:20 the result for m=0 is "-1" this is due to an error at 14:36, where you wrote -2m+1 instead of -(2m+1) for the end-term of the derivatives.

    • @khoozu7802
      @khoozu7802 Год назад

      That is not a mistake

    • @khoozu7802
      @khoozu7802 Год назад

      That's because when he apply formula for
      ( d/dn) ^m f(x) =-1/2*-3/2*-5/2...
      the - 1/2 is starting from m=1 not m=0. So, if u want to calculate (d/dn)^0 f(x)=f(x), u cannot apply the formula, u have to do separately

    • @jackvankaam1433
      @jackvankaam1433 Год назад

      correct, I agree

  • @atreidesson
    @atreidesson Год назад

    Fun is for Function, I guess