Can you find lenght of red line? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 6 фев 2025

Комментарии • 8

  • @marioalb9726
    @marioalb9726 20 дней назад +1

    Angle CDB= α
    α = 180°-100°-(2*10°) = 60°
    h = 5√3 sinα = 5√3.√3/2 = 7,5 mts.
    Similarly of right triangles:
    x/5√3 = 5√3 /7,5
    x = 10 mts (Solved √ )
    If the figure were drawn into scale, this will be seen clearly !!!

  • @soli9mana-soli4953
    @soli9mana-soli4953 20 дней назад

    I solved with trigonometry and sines law in this way:
    On triangle BCD
    BC/ sin 60 = BD/sin 100
    BC = BD*sin 60 /sin 100 (1)
    On triangle ABC
    AC/ sin 160 = BC/sin 10
    BC = AC*sin 10/ sin 160 (2)
    Knowing that:
    sin 100 = sin (90 + 10) = sin(90 - 10) = cos 10
    and
    sin 160 = sin(180 - 20) = sin 20
    we can campare (1) with (2)
    (BD*√ 3/2)/cos 10 = 10√ 3*sin 10/sin 20
    BD/2*sin 20 = 10*sin 10*cos 10
    BD/2*sin 20 = 5*sin 20
    BD = 10

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 19 дней назад

    (10)^2 (3m)^2={100+9m^2}=109m^2 {10°A+10°C+130°B}={150°ACB+30°D}=180°ACBD/109m^2=1.7..8 1.7.2^3 1.3^4.1^1^1 3^2^2.1 3^1^2.1 3^2 (ACBD ➖ 3ACBD+2).

  • @youssefelyousfi4929
    @youssefelyousfi4929 20 дней назад

    BD=(sin100)*(sin10*)10√3/(sin60)(sin160) m