Solving a Rational Functional Equation

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии • 123

  • @davidseed2939
    @davidseed2939 3 года назад +75

    At 4:12 equation 2 is written incorrectly first term should be 1/(1-x)

    • @SyberMath
      @SyberMath  3 года назад +24

      That's right

    • @ian1385
      @ian1385 3 года назад +12

      That's what actually confused me. Thanks for the correction david!
      Author, please double check your video at the end for possible errors 😊

    • @elliott614
      @elliott614 3 года назад +4

      That really really made this confusing to watch :/ until I rewound. Should've looked at the comments I guess

    • @nasibakarzade5797
      @nasibakarzade5797 3 года назад +1

      -👌

    • @alphago9397
      @alphago9397 3 года назад +1

      Came here looking for an explanation regarding this as well. Thanks.

  • @golgathar5
    @golgathar5 3 года назад +24

    Can you do a video on how to solve functional equations in general or to solve different classes/types of functional equations please? Would be much appreicated as I find functional equations to be quite elegant.

    • @SyberMath
      @SyberMath  3 года назад +6

      They are elegant and that's a good idea!

    • @aashsyed1277
      @aashsyed1277 3 года назад +1

      @@SyberMath yes!

    • @adityaekbote8498
      @adityaekbote8498 3 года назад +1

      @@SyberMath have you done it I cannot see

    • @suntzu1409
      @suntzu1409 2 года назад +1

      @@SyberMath
      Have you done it?

  • @chillomillo505
    @chillomillo505 3 года назад +2

    2:55 I didn’t get it how you simplify the expression

  • @neuralwarp
    @neuralwarp 3 года назад +3

    I love this. It's like magic out of Harry Potter.
    "Specialis Revelio !"

  • @joaquingutierrez3072
    @joaquingutierrez3072 3 года назад +2

    Nice video !! I love how you solved it

  • @manojsurya1005
    @manojsurya1005 3 года назад +5

    Functional equations are also good,pls put next video on differential equation

  • @brunolevilevi5054
    @brunolevilevi5054 3 года назад +3

    I feel like this can be solved only because of the fact that f(x) = 1/1-x kinda repeats, f(f(x)) = f^-1(x) and f(f(f(x))) = x

    • @SyberMath
      @SyberMath  3 года назад +1

      That is correct!

    • @kaisgzara4302
      @kaisgzara4302 3 года назад

      @Bruno levi Levi
      &/- it does so only because . . . it’s an odd number of times fofof . . . of = x
      It wouldn’t work with an even number of times.
      Yes, that’s how it can be generalized.
      There’s another video with fof = x i.e. an even number of times . . . BUT that one works because it’s a product of terms with different powers, not the sum of terms, so the cancellation still works.

  • @williamhogrider4136
    @williamhogrider4136 2 года назад +1

    There are many ways to solve different functional equations... Many times you have to play with it for some time.

  • @HakingMC
    @HakingMC 3 года назад +2

    By the way, from the first equation, how would you determine x≠1, or is it purely written down because you know from the final solution that x cannot be 1 for f(x) to be defined?

    • @SyberMath
      @SyberMath  3 года назад

      Good question. Because of the expression 1/(x-1), x cannot be 1

    • @HakingMC
      @HakingMC 3 года назад

      @@SyberMath Oh my god. How didn't I notice that?
      It's literally in the thumbnail too.

  • @Strohhutjunge
    @Strohhutjunge 3 года назад +1

    At 3:43 the equation 2 is written wrongly, should be f( 1/(1-x) ) + f( (x-1)/x ) = 1/(1-x) . Please correct this or take video out!

    • @advaitpetiwale9596
      @advaitpetiwale9596 3 года назад +2

      No need to be so harsh. Besides, another commenter has commented and that comment is pinned.

  • @ezzaddin9351
    @ezzaddin9351 3 года назад +1

    thank you for this strategy I will surely use it!

  • @spelunkerd
    @spelunkerd 2 года назад

    Not doing this every day, I'm stumbling on why you are allowed to conveniently assign x=1/(1-x). Aren't you changing the parameters of the equation? If you do decide to do that, like a u-substitution for an integral, don't you have to change it back after you get it into form?

  • @souhilaoughlis5832
    @souhilaoughlis5832 3 года назад +1

    Wow ! The best of the best !

  • @sebastianramirezcaseres2965
    @sebastianramirezcaseres2965 3 года назад

    Thanks a lot ! Its a great channel.
    Greetings from colombia 🙂

  • @lori2364
    @lori2364 3 года назад

    hope this channel get huge

  • @AngadSingh-bv7vn
    @AngadSingh-bv7vn 2 года назад

    Matt Penn recently did this same functional equation on his channel.

  • @ahcenecanpos9463
    @ahcenecanpos9463 3 года назад +1

    errors in f(1/(1-x))# f((1-x)/x) errors no simplfy

  • @MathZoneKH
    @MathZoneKH 3 года назад

    please more videos like this sir!

  • @muhammadsheyhidan5010
    @muhammadsheyhidan5010 3 года назад

    I dunno how to do it and also dunno how did you come with that approach.. amazing 🤩

  • @barbietripping
    @barbietripping 3 года назад

    Where can I get more practice problems on functional equations

    • @SyberMath
      @SyberMath  3 года назад +1

      www.amazon.com/Introduction-Functional-Equations-Problem-solving-Mathematical/dp/0821853147
      www.amazon.com/Topics-Functional-Equations-Third-Xyz/dp/099934286X
      www.math.uci.edu/~mathcircle/materials/M6L2.pdf

  • @Joker-ef3kt
    @Joker-ef3kt 3 года назад +3

    Great video as always

    • @srijanbhowmick9570
      @srijanbhowmick9570 3 года назад +4

      He doesn't generally do proof type problems but nevertheless it's a good question

    • @SyberMath
      @SyberMath  3 года назад +3

      Thank you! That's a good problem but a bit too hard for the channel, I think

    • @SyberMath
      @SyberMath  3 года назад

      It is

    • @aashsyed1277
      @aashsyed1277 3 года назад

      @@SyberMath IT IS WHAT?

    • @davidseed2939
      @davidseed2939 3 года назад

      i think you will find that regardless of the initial value of x, cos(x) and sin(x) are in bounds(-1,1) ,
      sin is montonic in the range, cos needs also to consider the value 0. so take two montonic ranges.
      then each successive application of the function narrows the range which i think converges on sin(x)=x and cos(x)=x those values are different and the ranges of answers for the two different functions do not overlap.
      You will need a calculator.

  • @generalvideos441
    @generalvideos441 3 года назад

    Substituting 1/(1-x) instead of x will not affect the equation????.............

  • @VSN1001
    @VSN1001 3 года назад

    Damm! This is amazing! Also, how can you intuitively know to replace x with 1/(1-x)? Cause usually I will try special values and attempt to reduce the equation. Thanks :)

    • @karljo8064
      @karljo8064 3 года назад +1

      if you've practiced millions of maths problems, you will get that instinct; you know how to solve the problems. There are limited kinds of problems and limited ways of solving them, just try watch as many problem solving videos as you can.....

    • @depsilon0183
      @depsilon0183 3 года назад

      @@karljo8064 yes I've noticed this too many times. Experience is 👑

    • @caiodavi9829
      @caiodavi9829 2 года назад

      a bit too late, but i can answer you question: it`s not intuition, it`s logic. in functional equations, you are, basically, trying to get useful info. to achieve this, there are a few, let`s say, tricks. to know what tricks to use, you analyse the function.
      in this case, i analysed and can tell you that there are really few tricks one can use. in fact, there is only one:
      notice that f(x) is linked to f(1/1-x). therefore, if you know what f(1/1-x) is, you get your solution (that`s why he plugged f(1/1-x)). after this, you get f(1/1-x) is linked to f(x-1/x). applying the same logic, you want to know what f(x-1/x) is, so you plug it. then, you have f(x-1/x) is linked to f(x).
      do you see what happened? f(x) is linked to f(1/1-x), which is linked to f(x-1/x), which is linked to f(x). thus, you have f(x) linked to itself (the actual goal of a functional equation). now, you just solve the system of equation and get the value of f(x). btw, this is called the circle method.

    • @VSN1001
      @VSN1001 2 года назад

      @@caiodavi9829 Ahh I see, thanks for the detailed explanation! One thing I still don’t understand is that how you know the circular method works before even beginning to substitute. Like what is the insight behind x -> 1/1-x -> x-1/x -> x? Does it only work for 1/1-x or is there other fractions in the form p(x)/q(x) that works and why?

  • @حسینکریمیان-ع1غ
    @حسینکریمیان-ع1غ 3 года назад

    Hi professor. Very nice.do you have chanel on the Instagram?

  • @aounimed193
    @aounimed193 3 года назад

    une erreure a 4:32 eq 2

  • @meowmeow-yq9xt
    @meowmeow-yq9xt 2 года назад

    I like this ❤️

  • @papaganush420
    @papaganush420 3 года назад +2

    Bazı videolarda yorumlarda türkçe yazmışsın türkiyeden misin yoksa çeviri mi kullandın ?

    • @SyberMath
      @SyberMath  3 года назад

      Siz turkler cok soru soruyor 😂

    • @papaganush420
      @papaganush420 3 года назад

      @@SyberMath o kadar yanıt verince ve aksanından ben de türk olduğunu sandım :D

  • @seasea5938
    @seasea5938 2 года назад

    4:07第2式寫錯了

  • @comingshoon2717
    @comingshoon2717 3 года назад +3

    típico problema de olimpiadas de matemáticas, así como para soltar la mano jaja ... saludos desde Chile bro

  • @grumpyparsnip
    @grumpyparsnip 3 года назад

    I guess this works because a certain matrix has order 3 in PSL(3,Z).

  • @nesjohguei
    @nesjohguei 3 года назад

    Excelent I enjoyed the video

  • @tamarkan
    @tamarkan 3 года назад

    Is SyberMath Turkish by any chance?

  • @andrec.2935
    @andrec.2935 11 месяцев назад

    Isso é Bom demais!

  • @krishnannarayanan5252
    @krishnannarayanan5252 3 года назад

    f(1-x/x) minus f(1/1-x) is zero is a great lesson for me my maths professor (my own sister) gives me zero mark and says idiot!!!!!!

  • @saidnsiri3487
    @saidnsiri3487 3 года назад +1

    There are errors

  • @caddoss
    @caddoss Год назад

    Problem with this solve

  • @bakixanmadatov4620
    @bakixanmadatov4620 3 года назад

    f(super) + f(1/(1-super)) = super
    😀😀😀
    👍👍👍

  • @jorgepedreirapedreira678
    @jorgepedreirapedreira678 2 года назад

    Hi SyberMath...may you solve the functional equation...
    f(x)+f(1/x)=1
    Thank you for attention ::

    • @walterufsc
      @walterufsc 2 года назад

      If f(x) = 1/2, it works!

  • @violet_broregarde
    @violet_broregarde 3 года назад

    I get why x!=1 but why x !=0?

  • @josemanuelbarrenadevalenci653
    @josemanuelbarrenadevalenci653 2 года назад

    No es correcto.
    f((1-x)/x) no es igual, en principio a f(1/(1-x)).

  • @hkemal2743
    @hkemal2743 3 года назад

    It should better be good. Bc it's both rational and functional.

  • @udibaraj6714
    @udibaraj6714 3 года назад

    Is this high school level?

    • @SyberMath
      @SyberMath  3 года назад

      More like competition/olympiad level

  • @Grassmpl
    @Grassmpl 3 года назад

    These steps would fail in characteristic 2.

  • @simohamed7148
    @simohamed7148 3 года назад

    Pas facile les chose besoin une axiome spledide

  • @CriticSimon
    @CriticSimon 3 года назад

    Functional equations are good

    • @SyberMath
      @SyberMath  3 года назад +1

      Absolutely!

    • @leif1075
      @leif1075 3 года назад

      @@SyberMath WHY do that replacement why not plug in values for x like zero, one half and 2 and make equationa..you could do it that way..why wiuld anyone ever rhink of doing that replacement..i don't see why...

    • @leif1075
      @leif1075 3 года назад

      @@SyberMath Waitna minute you cant add the equations like that because you made a substitution..so what is f(x) in ome equation is not equals to f(x) in another and same with f(x-1/x)..see what I mean? So this can't be correct. When doing subsittution it's generally better to pick a different variable like u not the same one, as you know.

    • @SyberMath
      @SyberMath  3 года назад

      It's like taking the composition of two functions. For example f(2x+1) is the same as f(g(x)) where g(x)=2x+1

    • @leif1075
      @leif1075 3 года назад

      @@SyberMath can you respond to my comment above pretty sure you made a mistake when you added the two equations though..becsuse f of x for one equals f pf 1/1-× or whatever for the others..

  • @ritampaul5005
    @ritampaul5005 3 года назад

    nice problem...

  • @krishnanadityan2017
    @krishnanadityan2017 3 года назад

    I think you are fast on algebraic simplifications and I'm sorry to tell that it's not purely error-free sometimes.

    • @SyberMath
      @SyberMath  3 года назад +1

      Thank you! I know. I make mistakes

  • @tarkmermer7637
    @tarkmermer7637 3 года назад +1

    Are you turkish

  • @hangdavit5552
    @hangdavit5552 Год назад

  • @thewatchman_returns
    @thewatchman_returns 3 года назад

    Madagascar

    • @SyberMath
      @SyberMath  3 года назад

      Reminds me the movie 😁

  • @حين-8ع
    @حين-8ع 3 года назад

    good

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 года назад

    L'ho fatto tempo fa e il risultato è.... f(x) =(1/2)(x^3-x+1)/(x-1)x se ben ricordo

  • @Germankacyhay
    @Germankacyhay 3 года назад

    👍

  • @firi4737
    @firi4737 3 года назад

    classic

  • @keelermalmsten3395
    @keelermalmsten3395 Год назад

    You are losing 90% of your audience by not using another variable.

  • @akshatjangra4167
    @akshatjangra4167 3 года назад

    Copied from michael penn bruh
    Anyways,nice video

    • @SyberMath
      @SyberMath  3 года назад

      I did not copy from Michael Penn bruh
      😂

    • @akshatjangra4167
      @akshatjangra4167 3 года назад

      @@SyberMath oh sorry, he did the same problem a few months ago though

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 года назад

    Likeee

  • @goph999
    @goph999 3 года назад

    Take a hearcut and get yourself a job