Let's Solve A Nice Cubic Equation

Поделиться
HTML-код
  • Опубликовано: 12 ноя 2024

Комментарии • 10

  • @holyshit922
    @holyshit922 9 месяцев назад

    Maybe video about how to write code for polynomial equation solver
    1. Eigenvalues method (QR method with shifts and deflation)
    2. Bairstow method (deflation with quadratic factor, in my opinion Newton's method which is used in this algorithm causes the problems)
    3. Jenkins - Traub (RPOLY version)

  • @jarmingho
    @jarmingho 9 месяцев назад

    The last bit was so flawless 😂

  • @christopherellis2663
    @christopherellis2663 9 месяцев назад

    Such fun! 💪

  • @yoav613
    @yoav613 9 месяцев назад

    Nice,completing the cube😊

  • @wes9627
    @wes9627 9 месяцев назад

    x^3 grows faster than x^2+3x+3, so there is a real root between 2 and 3, somewhat closer to 3 than 2. Fixed-point iteration x←∛(x^2+3x+3) starting with x=2.6 gives x=2.59867...
    What about the other two roots? Divide x^3-x^2-3x-3=0 by (x-2.59867...): x^2+1.59867x+1.15444=0 yields x=(-1.59867±i1.43579)/2=-0.79934...±i0.71799...

  • @scottleung9587
    @scottleung9587 9 месяцев назад

    Nice!

  • @pietergeerkens6324
    @pietergeerkens6324 9 месяцев назад

    Very nice!
    I found Method 1; but failed in finding Method 2 because I missed the initial multiplication through by 9.

  • @barakathaider6333
    @barakathaider6333 9 месяцев назад

    👍

  • @Skyler827
    @Skyler827 8 месяцев назад

    Any time I'm solving a cubic equation i will break it down in terms of (x + something else)

  • @gmncnr
    @gmncnr 9 месяцев назад

    method 2 was good