Why Are Time Series Special? : Time Series Talk

Поделиться
HTML-код
  • Опубликовано: 12 янв 2025

Комментарии • 117

  • @musclesmalone
    @musclesmalone 3 года назад +176

    Dude, you are carrying me through my data science MSc. Sincere gratitude for all of your sublime teaching resources. If it was common practice for schools and universities to train their staff to teach science and mathematics the way you teach it, quite literally the world would be a better place!

    • @xXxIMMORTALxXx
      @xXxIMMORTALxXx 2 года назад +4

      This is why I don't go back to school for MSc. Dude so many free sublime materials on the internet!

    • @tsetse4327
      @tsetse4327 2 года назад +3

      Same here for MSc in Finance))

    • @Kumail_12
      @Kumail_12 Год назад +1

      Absolutely agree

  • @lennyn6662
    @lennyn6662 4 года назад +40

    "we usually only care about predicting the future" love that quote

    • @bungaIowbill
      @bungaIowbill 9 месяцев назад

      To be fair, imputing missing data is basically predicting the past

  • @aakuthotaharibabu8244
    @aakuthotaharibabu8244 2 года назад +7

    almost wasted so many months to find this master piece tutorials for time series. Instead of telling its difficult / complex you gave a clear idea why its important to learn timeseries. Thank you for the complete playlist.

  • @ladieimp2416
    @ladieimp2416 2 года назад +7

    You are the best! Thank you for making these videos and giving us such wonderful explanations. You deserve one of those RUclips awards if you haven't already gotten one.

  • @alexei.domorev
    @alexei.domorev Год назад +4

    The best explanation I ever heard about why time series are so fundamentally different! Thanks Ritvik!

  • @dasundesilva5588
    @dasundesilva5588 3 года назад +1

    Holy shit dude, I've been studying simulating paths for stocks and stuff for the past month and I've been struggling to understand the point. The prediction intervals and accumulating uncertainty explanation clears up so much! I am almost in tears! thank you

  • @hameddadgour
    @hameddadgour 2 года назад +2

    I am learning more by watching your videos than I did in my graduate program. Well done!

  • @upendrap991
    @upendrap991 11 месяцев назад

    Thanks to bard AI, it provided a link to your website which led me to watch your videos. Your teaching is not only has depth but also easy to understand. Such a rare combination. Please keep doing this and thank you.

  • @xXxIMMORTALxXx
    @xXxIMMORTALxXx 2 года назад +1

    Just watched your VAR video and this is the second video of yours I've watched. I gave you a like when I was just 7 secs in. This does not disappoint. Your explanation is soooooo good. Please don't stop making more videos. I just subscribed to your channel.

  • @yichenliu8303
    @yichenliu8303 11 месяцев назад

    Thank you so much for making these videos! I like how you use examples to illustrate the concepts in time series, which is very easy to understand.

  • @unaccy
    @unaccy Год назад

    Thank you so much! Great video for me who has no math and data science knowledge. I finally got clear about the differences of regression and time series!

  • @glitzprince
    @glitzprince 4 года назад +4

    This is a really great series. Thanks for uploading this.

  • @EdgarPE81
    @EdgarPE81 4 года назад +7

    You put up some really useful content, like this, I appreciate it! Your channel has a great potential, it just needs some marketing ;)

  • @BetoAlvesRocha
    @BetoAlvesRocha Год назад +3

    What an amazing way to introduce Time Series, mate! Can't wait to see the other videos in your playlist about this subject.
    Many thanks for that and greetings from Brazil! ;)

  • @avananana
    @avananana 2 года назад +5

    It's actually nuts how nonsensical our lecturer is trying to explain all these concepts. Been binging this channel for a bit over the past few days and everything makes so much more sense now. It's crazy how bad some people are at teaching, yet take on the job of teaching. Obviously it's nothing personal, but my god if you're gonna apply as a teacher, lecturer, whatever, at least have some basics in teaching :

  • @cynthiadaoud4381
    @cynthiadaoud4381 Год назад

    Very useful. I checked your video for my PhD research paper. Thank you

  • @rahulmandalsky
    @rahulmandalsky 3 года назад +1

    The Non-time series way where we find out the relation between x_i and y, the value can be interplated or extrapolated based on x_i. It need not be interpolation always. Say we have linear regression y=3x+2. We can find y for any points outside of what values we have. So it can be interpolation or extrapolation. But for time series X_i which is time now will never occur again so it will always be extrapolation.

  • @MrCEO-jw1vm
    @MrCEO-jw1vm 7 месяцев назад

    Thorough and great explanation of this subject matter. Thanks so much

  • @fatriantobong
    @fatriantobong 11 месяцев назад +1

    It's crucial to be clear about the terminology, as the terms "regression" and "interpolation" have specific meanings and uses in statistical and mathematical contexts. If someone refers to regression as a form of interpolation, they may be emphasizing the predictive aspect of regression models within the observed data range. However, it's not a universally accepted terminology in formal statistical discussions.

  • @卞嘉嘉
    @卞嘉嘉 2 года назад

    your videos are so helpful and excellent, thank u for sharing. looking forward to watching more time series related videos~~

  • @TeeRMN
    @TeeRMN 2 года назад

    I appreciate all your effort my man! Thank you so much

  • @tomtrask_YT
    @tomtrask_YT 4 года назад +3

    Your prediction interval on the demand vs temperature graph also grew at the highs and lows for exactly the same reason - your basis for the extreme temperature demands is based on less data than near the average, say, monthly temperatures where you have tons of data.

  • @saravanannatarajan6515
    @saravanannatarajan6515 3 года назад +2

    Great explanation! Your videos are really awesome! Keep posting videos

  • @BreezeTalk
    @BreezeTalk 3 года назад +1

    Your channel is an "$84K" wealth of knowledge.

  • @abhishekjn3390
    @abhishekjn3390 4 года назад +10

    i fell in love with time-series just because of this video ;-)

  • @HussainShamsu
    @HussainShamsu 5 месяцев назад +2

    Thank you sir for this amazing content 👏 🙏

  • @ranitdey5829
    @ranitdey5829 3 года назад +2

    Excellent explanation. I just came accross your channel today. I must say you're doing really great work!! 👍🏻✌🏻

  • @ib2002-o6d
    @ib2002-o6d 6 месяцев назад +1

    Notes for future
    - TS is an extrapolation problem and error keeps on increasing as we move away from known data
    - Reg is an interpolation problem and error is more or less same, since prediction is usually made in the range of available data.

  • @shivam1188
    @shivam1188 2 года назад

    Excellent presentation on diff between regression and time series

  • @harrishe5119
    @harrishe5119 4 года назад +3

    Thanks for the clear explanations!

  • @28jery
    @28jery Год назад

    U r the Best .It's so important for me to trade in unpredictable market.

  • @aminjamal2758
    @aminjamal2758 4 года назад +14

    Excellent explanation. it helped a lot. i have watched most of the videos and it is so good in theory. i would like to see if you can put some practical examples on VAR, ARCH, GARCH, of course with the help of packages like Eviews.

  • @thiagomarchesan9412
    @thiagomarchesan9412 3 года назад

    Your classes are excellent. Thanks for sharing.

  • @teegnas
    @teegnas 4 года назад +1

    undoubtedly the best TS playlist on youtube that I'm aware of. Would love to see a lot more videos on this topic soon. Thanks for your hard work!

  • @martinyong8944
    @martinyong8944 4 года назад +1

    Great video I really appreciate the work you do!

  • @safeedafaisal3447
    @safeedafaisal3447 4 года назад

    loved your way of presentation... nice explanation... keep going...

  • @cusematt23
    @cusematt23 8 месяцев назад

    I just stumbled on to your channel. Great stuff mate.

  • @shandou5276
    @shandou5276 3 года назад +7

    This is very well done! Had never heard this interpolation vs. extrapolation distinction being articulated before. One question: for multivariant time series forecasting, if we have a data volume that is large enough for RNN, how should we think of RNN under this framework? Strictly speaking, it is an ML approach so it should be interpolating, but it is also used (when conditions allow) in some forecasting tasks. What could the best way to categorize RNN? Thank you :)

  • @atifdai313
    @atifdai313 2 года назад

    Excellent work.................. Request to make separate and easy videos for Machine Learning, especially real-world data, energy, water, or climate change.

  • @yousefsafa5248
    @yousefsafa5248 Год назад

    Thanks. Learned a lot. Great explanation.

  • @Tom-sp3gy
    @Tom-sp3gy 6 месяцев назад

    What clarity! Thanks so much !

  • @maksymhladchuk6230
    @maksymhladchuk6230 Год назад

    you are very good at teaching, thanks for this videos

  • @dhirendersingh2199
    @dhirendersingh2199 3 года назад +2

    Your videos seem great, do you mind giving some insight into the ARIMAX/SARIMAX models, specially how the external regressors can influence your dependent variable of the series in question.

  • @axscs1178
    @axscs1178 3 года назад +4

    During muy Msc, I had one full course on financial time series... Even though they were toy examples, predictions were awful... Don't know why many grad programmes don't focus on incorporating additional predictors (within the ts domain) rather than just the lagged values themselves and their variants. For prediction purposes, I have not found ts really useful. Interesting explanation and your videos are great btw.

  • @ridhampatoliya4680
    @ridhampatoliya4680 3 года назад

    I was here before this channel got 1 million subscribers.

  • @VinodKumar-nn7go
    @VinodKumar-nn7go 2 года назад

    Thank god we are not yet travelling back in time, like the move ' The Adam Project'. Otherwise the time series would become an interpolation.. lol !!! Awesome video by the way

  • @bryancapulong147
    @bryancapulong147 2 года назад

    Our project was given 5 years of annual data and we're asked to predict up to 10 years. Seeing that last part now makes me scared on why the project was approved at all.

  • @yaweli2968
    @yaweli2968 Год назад

    Could you explain stability in times series? I do understand that stationary times series have finite mean and variance and their covariance or correlation is not time dependent and as two points are far off, the covariance turns to 0. Is stability in TS actually different from stationary property?

  • @CNW21
    @CNW21 2 года назад

    Is there a way to combine interpolation and extrapolation? Why cant we include say, predicted temperature data along with the time series predictions?

  • @ebateru
    @ebateru 3 года назад

    Question: If we are forecasting tomorrow's ice cream sales using temperature as the only input, how are we not extrapolating? What's your exact definition of extrapolation here?

  • @2lazy4nick
    @2lazy4nick 4 года назад +1

    Your videos really helped me understanding a lot more. Thank you so much for that!
    I have a request: Can you do VECM?

  • @roopanjalijasrotia3946
    @roopanjalijasrotia3946 4 года назад +1

    This is quite insightful. Thanks ! Could you please also talk about direct vs recursive forecasting. I am super confused about the topic.

  • @MO-xi1kv
    @MO-xi1kv 3 года назад

    Such a nice video to kick off the series!

  • @chenqu773
    @chenqu773 3 года назад +1

    Good talk! So in this case, deep learning based models such as LSTM should also suffer from this extrapolation behavior. The more it predict into the future, the bigger error should be witnessed ?

  • @katielui131
    @katielui131 6 месяцев назад

    That makes intuitive sense. My question is aren’t the data points on the temperature-sales graph that haven’t appeared yet also “future” data points, so they also carry the uncertainty in the time component with them? So we are still extrapolating but unlike time-series data we are not extrapolating based primarily on the time-related/varying features? But only extrapolating based on features that we may assume time doesn’t have an effect on? To me it sounded like they both have components of interpolation and extrapolation? Am I misunderstanding some concepts?

    • @ritvikmath
      @ritvikmath  6 месяцев назад +2

      Great analysis!
      Yes, even a non-time-series trend has interpolation and extrapolation components. The big difference though is how often we need to perform these operations for time-series vs non-time-series data.
      If we think about non-time-series data, the more data points we collect, the more and more likely any future prediction will be inside the range of observed data points making it usually interpolation.
      This is not true for time-series data since we're mainly making predictions about the future meaning we're usually doing extrapolation.

    • @katielui131
      @katielui131 6 месяцев назад +1

      @@ritvikmath thanks for explaining! That makes sense. I guess when we say we are usually doing interpolation on non-time-series data assumes that the variables measured aren't significantly impacted by time, or maybe time impact them equally (same magnitude, same direction) and it all cancels out -- because when we are not accounting for time as a variable when we're doing non-time-series data, the effect of time is implicit/contained in the data/observation, and we are assuming it has no effect on the (placement of the) data, when we are doing interpolation. And we know for sure for time-series data, we are definitely extrapolating because it is always beyond the data points we have because we are mapping things exactly against time.
      Maybe I am reading too much into this!

    • @swapnildudhane6193
      @swapnildudhane6193 2 месяца назад

      @@ritvikmath Great discussion, my question is when we are predicting something in future in time-series data, considering seasonality, can we also not term it as some sort of interpolation? If we have the observed value of Jan''24, we might be interpolating Jan'25? Btw great video!

  • @aayushit1513
    @aayushit1513 2 года назад

    Hi Ritvik! Thank you so much for this amazing content. Can you please do a video on ARIMAX and SARIMAX concepts

  • @rajavelks6861
    @rajavelks6861 2 года назад

    Thanks Ritvik
    Rajavel KS
    Bengaluru

  • @indratanaya5701
    @indratanaya5701 Год назад

    Wow, you are the best, man!

  • @Hermioneswand1
    @Hermioneswand1 3 года назад

    Love your channel, thank you!!

  • @Akshatgiri
    @Akshatgiri 8 месяцев назад

    Fantastic explanation

  • @raj-nq8ke
    @raj-nq8ke 3 года назад

    Really good video. Loved the theory.

  • @kshitijdhiman1871
    @kshitijdhiman1871 3 года назад

    very very well explained keep up

  • @mrj6967
    @mrj6967 Год назад

    tnx for this video, very insightful

  • @SarahMMorsy
    @SarahMMorsy 6 месяцев назад

    A question please, are these videos helpful for biological time series analysis?

  • @akashbhateja7410
    @akashbhateja7410 3 года назад

    Thats a great explanation! Can you share some reading resources also?

  • @mohammedelfaramawi3028
    @mohammedelfaramawi3028 8 месяцев назад

    Great explanation

  • @sudha137
    @sudha137 Год назад

    Hi Ritivik,
    Can you suggest some books on time series so that we can follow. Thanks.

  • @drormarkus2777
    @drormarkus2777 4 года назад

    Your explanations are great! Clear and simple.

  • @qaws2119
    @qaws2119 9 месяцев назад

    Do the videos in this playlist follow a logical order for the arguments?

  • @deter3
    @deter3 4 года назад

    very inspiring video !!! thanks

  • @l2edz
    @l2edz 4 года назад +1

    Thank you! Is there a way to combine both temperature and time? Would that be vector autoregression?

  • @akshaysethia5618
    @akshaysethia5618 2 года назад

    Hi,
    Can u pls share the sequence in which we should watch these videos? It's very confusing otherwise becz we seem to be jumping between the topics in unexpected manner.

  • @yassine20909
    @yassine20909 2 года назад

    Brilliant. Thank you

  • @ama9200
    @ama9200 3 года назад

    Very interesting ! Thanks

  • @k10shetty
    @k10shetty 3 года назад

    what if we need to generate some missing data from the past using time series ?

  • @yangxu7229
    @yangxu7229 3 года назад

    Hoping to add VEC model

  • @ferdinandfriedl4183
    @ferdinandfriedl4183 2 года назад

    3 days left to the exam....with help of your playlist, passing seems possible

  • @romniyepez5206
    @romniyepez5206 4 года назад

    Nice vids mate. Please, could you try Kalman Filter ala Hamilton 1995?

  • @andreaLA222
    @andreaLA222 3 года назад

    Awesome video! Thanks!

  • @akshitsaini-x5g
    @akshitsaini-x5g Год назад

    hey , how can we connect with you?
    what are some books you suggest for time series

  • @bidishasarkardatta1689
    @bidishasarkardatta1689 4 года назад

    Hi! immensely helpful was searching for your email to put in a request. please to make a few videos explaining with practical examples of research work how the var, arima, cointegrtion, garch arch models are being used. and please put up some videos on cointegration too

  • @kostyamamuli1999
    @kostyamamuli1999 2 года назад

    Great video !

  • @lawbindpandey402
    @lawbindpandey402 8 месяцев назад

    loved it !! 🤍

  • @sohailhosseini2266
    @sohailhosseini2266 2 года назад

    Thanks for the video!

  • @davidsmith6028
    @davidsmith6028 Год назад

    This is amazing

  • @RealThrillMedia
    @RealThrillMedia 11 месяцев назад

    Super helpful!

  • @theacarp6807
    @theacarp6807 4 года назад

    amazing!!!

  • @kanchithakkar8471
    @kanchithakkar8471 2 года назад

    Thank you so much

  • @jake_runs_the_world
    @jake_runs_the_world 2 года назад

    legend

  • @ferdinandfriedl4183
    @ferdinandfriedl4183 2 года назад

    Shit - finally i got the point about an AR(1) Model

  • @awesomeGuss
    @awesomeGuss Год назад

    thank you!

  • @aishamalik2282
    @aishamalik2282 3 года назад

    Thanks a lot!!!

  • @solaris413
    @solaris413 Год назад

    are you a quant?

  • @李靖-f4h
    @李靖-f4h 3 года назад

    If you can give some materials of the videos, it will be better. Only videos isn't friendly to review and learning, Especially when the words of videos can't be showed and a viewer isn't native English speaker.

  • @gooeyyeoog8535
    @gooeyyeoog8535 7 месяцев назад

    man keep it up

  • @alfredalfredovic3076
    @alfredalfredovic3076 4 года назад

    Danke!

  • @korman9872
    @korman9872 3 года назад

    tx sir

  • @codderrrr606
    @codderrrr606 2 года назад

    the channel has too few subscribers.

  • @jakobforslin6301
    @jakobforslin6301 4 года назад

    You should be teaching at university!