calculus 2, integral of (lnx)^2 via integration by parts

Поделиться
HTML-код
  • Опубликовано: 2 фев 2025

Комментарии • 236

  • @blackpenredpen
    @blackpenredpen  Год назад +3

    Check out my 100 integral video for the ultimate integration practice ruclips.net/video/dgm4-3-Iv3s/видео.htmlsi=jABucFLXzZMXwkC5

    • @ddodd69
      @ddodd69 6 месяцев назад

      Wow youre so young here

  • @anka5486
    @anka5486 8 лет назад +15

    it seems like you re teaching the whole world to integrate anything i really appreciate it thanks from Turkiye

  • @farrett47
    @farrett47 7 лет назад +23

    Short, simple, to the point. first time on your channel and i love the way this video is put together, there is no 10 minute intro about the history of math or anything. Thank you so much

    • @maalikserebryakov
      @maalikserebryakov Год назад +1

      “no 10 minute intro about the history of math or anything”
      LMAO

    • @ryane.1160
      @ryane.1160 Год назад +2

      ⁠​⁠@@maalikserebryakov “”no 10 minute intro about the history of math or anything” LMAO” LMAO

  • @selmatprkz
    @selmatprkz 6 лет назад +39

    Big thanks from Turkey 👋 This mathematics channel is excellent.

  • @yasmine7003
    @yasmine7003 6 лет назад +16

    I just wanted to thank you for making everything so clear! I finally got it!

  • @taijmohabeer4515
    @taijmohabeer4515 Год назад +1

    hello, i attempted this by the u-sub method and got the same answer despite only recently learning that method. You are an amazing teacher, thank you so much

  • @hamade7997
    @hamade7997 8 лет назад +20

    Wow, this a great explanation. Thanks for putting so much work in!

  • @victoriabriseno1302
    @victoriabriseno1302 7 лет назад +4

    This is seriously so helpful. Thanks for sharing your knowledge!!! Glad I found this channel.

  • @christianmoray1842
    @christianmoray1842 4 месяца назад +1

    You're great dude! I enjoyed this video

  • @beyzagogebakannn
    @beyzagogebakannn Год назад

    Glad I found this channel. Many thanks from Turkie

  • @jinhu6039
    @jinhu6039 5 месяцев назад

    I love your easy classes, really help me learning bc

  • @muhammadsyahrani9121
    @muhammadsyahrani9121 8 лет назад +2

    Finally found the explanation that easily being understand! thank u so much, I'll lookin' forward to ur channel for more of dis :)
    big thx from Indonesia

  • @VolksdeutscheSS
    @VolksdeutscheSS 2 года назад

    Great channel, blackpendredpen. Machen Sie weiter mit gutem Arbeit!

  • @harshag.2085
    @harshag.2085 7 лет назад +14

    It's much better to substitute ln(x)=t. And using x=e^t. Then applying Integration by Parts.

  • @rogue_hk
    @rogue_hk Год назад

    you are amazing, thanks for saving my finals

  • @vazkuzhd1321
    @vazkuzhd1321 2 года назад +1

    Great video man. Thanks, from a human that will hopefully contribute to the world for the better.

    • @tuntacle1389
      @tuntacle1389 2 года назад +2

      bro he is helping you with your homework. you arent iron man.

    • @lumina_
      @lumina_ Год назад

      ​@@tuntacle1389lol

  • @FunmiOyewunmi
    @FunmiOyewunmi 3 месяца назад

    Thank you so much.This was very helpful❤❤❤

  • @elifatasoy2362
    @elifatasoy2362 5 лет назад +6

    I have a math exam tomarrow thanks god ı find you!!

  • @luissaucedo1342
    @luissaucedo1342 4 года назад

    You are going to save me in Calculus class. I love your videos and how you explain every part. Thank you!

  • @fernandocueva3982
    @fernandocueva3982 5 лет назад +3

    I love the way you resorve My problem with this so easy.greatin from RD.

  • @sakkaran3050
    @sakkaran3050 3 года назад +1

    Thanks youtube algorithm for recommending you

  • @jakewheat9296
    @jakewheat9296 7 лет назад

    And as I like to say, that is it, Brilliant. I love it !

  • @taekwondotime
    @taekwondotime 5 лет назад +2

    The integral of ln(x) is in the integration table, so you could have skipped doing the second IBP and just moved directly to the solution. :)
    Thanks for the help though. This one had me stumped.

  • @boidaemon8733
    @boidaemon8733 2 года назад +1

    There is a a simple way of doing this. set u=lnx, x=e^x and do one integration by parts and u get the same answer, great vid tho as always

  • @nein3479
    @nein3479 4 года назад

    Thank you so much for aiding me with my homework!! Appreciated

  • @yimeitang7071
    @yimeitang7071 7 лет назад +1

    Big thanks from Germany!!!!

  • @frk2224
    @frk2224 9 лет назад

    Greetings from Turkey 💙💚💛💜

  • @zawmyint9753
    @zawmyint9753 4 дня назад

    Very thanks

  • @anshthakur4677
    @anshthakur4677 8 лет назад +57

    More simple if you have substituted u =lnx and then e^u=x and dx =e^u du

    • @kevinfang4362
      @kevinfang4362 7 лет назад +13

      nah

    • @sharathgowtham2157
      @sharathgowtham2157 4 года назад +1

      This is integration by parts section

    • @mrpee2482
      @mrpee2482 4 года назад +1

      Blackpenredpen isn't for simple math 😁

    • @anshthakur4677
      @anshthakur4677 4 года назад +1

      @@mrpee2482 i see

    • @weissachpassion
      @weissachpassion 4 года назад +5

      Why ? Then you would have u^2*e^u and you would have to do Integration by parts two times...

  • @zXeDwInZx
    @zXeDwInZx 6 лет назад

    excellent, i will recommend you from my friends in mexico thanks for the help :D

  • @iyer2001in
    @iyer2001in 9 лет назад +17

    These are great videos. Brought be back to my student days. Was just wondering if you could also highlight the LIATE or ILATE principle esp. for Integration By Parts. May come in handy for students.
    None the less, keep up the good work!!!

    • @blackpenredpen
      @blackpenredpen  8 лет назад +7

      Hi there, sorry for the late rely. I was just watching my old videos and saw your comment. Yes I do know that method LIATE, however, I strongly encourage students to think hard about getting the part to be integrated first. I recently did a very fun IBP problem here
      ruclips.net/video/XhJqhE9Fyy8/видео.html and it really requires students to think on getting the integration part first. Hopefully you like it.

  • @pedrovictor2093
    @pedrovictor2093 3 года назад

    thank you very much from brazil

  • @kallyssabatalha666
    @kallyssabatalha666 9 лет назад +1

    thank you!! this video helped me so much! :)

  • @clarencechoy2382
    @clarencechoy2382 5 лет назад +1

    Thank you !! You explain very well!!

  • @darkmoon3646
    @darkmoon3646 6 лет назад

    U are the bestesttttt!!!!cant thank u Enough

  • @cacbon-dioxit
    @cacbon-dioxit 8 лет назад

    Big thanks from South Korea. :)

  • @israa6280
    @israa6280 6 лет назад

    You are amazing awesome and every thing is clear right now.. thx dud 😘

  • @SALMUZ
    @SALMUZ 8 лет назад

    It helped me a lot .. Greetings Brother ... from Peru

  • @coreygraham860
    @coreygraham860 2 года назад +2

    Wow. Didn't realize you can use dx by itself in the integral portion of integration by parts.

  • @anissyafiqah7656
    @anissyafiqah7656 7 лет назад

    Thank you! Helps a lot.😄😄

  • @lazziya5816
    @lazziya5816 6 лет назад

    Thank you so much from Turkey

  • @NicoHSR8
    @NicoHSR8 7 лет назад +1

    thanks man, explain everything, i´m brazilian

  • @gilmaferrer6488
    @gilmaferrer6488 5 лет назад

    Thank you. You are excellent!

  • @westonschwartz2483
    @westonschwartz2483 4 года назад

    You make it so simple! Keep up the great work

  • @Lara-mk2cp
    @Lara-mk2cp Год назад

    Juana 😂 thanks 👍🏼 😍♥️

  • @vaishalid2190
    @vaishalid2190 7 лет назад

    Really needed this, thank you so much!!!

  • @elenanorz6824
    @elenanorz6824 8 лет назад

    Thank you! 25% test tmr!

  • @PunmasterSTP
    @PunmasterSTP Год назад

    ln(x)? More like "Your videos are the best!" 👍

  • @beatleplayer1011
    @beatleplayer1011 8 лет назад

    Your videos are really cool, glad I found them! Subbed :)

  • @AG-jp2ni
    @AG-jp2ni 9 лет назад

    Excellent video, thanks a bunch.

  • @bethan8147
    @bethan8147 3 месяца назад

    @blackpenredpen can you use the DI method for this?

  • @breads4597
    @breads4597 3 года назад

    Super helpful, tysm buddy!

  • @ingenieriadelavida5607
    @ingenieriadelavida5607 6 лет назад

    gracias, saludos desde Perú

  • @udarue
    @udarue 3 года назад

    Cool video!

  • @andressilva2946
    @andressilva2946 9 лет назад

    thanks. from Uruguay

    • @pairot01
      @pairot01 9 лет назад

      +Andres Silva Arriba la celeste

  • @mathistruth9105
    @mathistruth9105 5 лет назад

    Solved it easily. We used the same method :).

  • @elisabarron3944
    @elisabarron3944 6 лет назад +1

    Simplemente excelente, felicidades

  • @License-l4b
    @License-l4b 6 лет назад

    Thank you .this is amazing .

  • @krishnacolindres9079
    @krishnacolindres9079 4 года назад

    You're the best!

  • @yairgomez7202
    @yairgomez7202 7 лет назад

    Eres chingon, te amo pinche chinito.

  • @benwinstanleymusic
    @benwinstanleymusic 5 лет назад

    hey thanks this was really helpful

  • @LiamLau
    @LiamLau 8 лет назад

    Just want to ask, what are the three stops for the DI method, and can you use the DI method here? Thank you, love the videos

    • @blackpenredpen
      @blackpenredpen  8 лет назад

      Thank you. Here's the video for that ruclips.net/video/2I-_SV8cwsw/видео.html

    • @LiamLau
      @LiamLau 8 лет назад

      thank you!

  • @halamohib3306
    @halamohib3306 4 года назад

    Thanks 😍😍😍😍😍😍

  • @ivanlozano8777
    @ivanlozano8777 5 лет назад

    great video! Thank you.

  • @welingtona.desouza8632
    @welingtona.desouza8632 3 года назад

    thanks. God bless you.

  • @凛-r3h
    @凛-r3h 4 года назад

    a lot easier than i thought ty

  • @luminenguin
    @luminenguin 2 месяца назад

    thank you :P

  • @ebotrawley2525
    @ebotrawley2525 4 года назад

    Over sense inside your head bro! More grace!

  • @grobbyman
    @grobbyman 7 лет назад +1

    So @blackpenredpen is the problem not solvable with the tabular method?

    • @carultch
      @carultch Год назад

      Any problem you can solve with traditional integration by parts, can be solved with the tabular method.

  • @alexispascual8699
    @alexispascual8699 2 года назад

    thank your for this videos

  • @DEFENDER1932
    @DEFENDER1932 5 лет назад

    You are awesome bro❤

  • @skhkwk
    @skhkwk Год назад

    thank you

  • @yovantejones7395
    @yovantejones7395 8 лет назад

    Gracias from berkeley, ca

  • @kambizmerati1119
    @kambizmerati1119 Год назад +1

    You re the best

  • @anesumukoyi
    @anesumukoyi 7 лет назад

    Thank you very much 😊

  • @beldeger8921
    @beldeger8921 9 лет назад +10

    entonces la respuesta es:
    ∫ ln²x dx = x (ln²x - 2lnx + 2) + C

  • @filip-kochan
    @filip-kochan 6 лет назад +7

    Wouldn't it be easier with DI method?

    • @mrpee2482
      @mrpee2482 4 года назад

      Isn't DI Method best for checking if your answer is correct ? Since it is not a rigorous working method?

    • @sanjayvaradharajan
      @sanjayvaradharajan 4 года назад +1

      @@mrpee2482 see his video on why it's a good method to use....see the video pls let students use di method

    • @mrpee2482
      @mrpee2482 4 года назад

      @@sanjayvaradharajan I am not against the DI Method it's only that the working isn't rigorous

    • @carultch
      @carultch Год назад

      @@mrpee2482 It's not any less rigorous than using the traditional method. In either case, you are using a method that someone else worked out for you, that works in any integration by parts method. The DI method is just a better way to organize exactly the same work.

  • @minesh5583
    @minesh5583 9 лет назад +1

    when do we use integration by parts? When we have two functions right?

    • @AlchemistOfNirnroot
      @AlchemistOfNirnroot 9 лет назад +2

      +Alias DMG Is kind of the product rule of integration (it's actually derived from that). When two functions are multiplied.

  • @jessicarivas4896
    @jessicarivas4896 3 года назад

    No hablamos el mismo idioma, pero gracias me sirvió mucho. Hay comprensión!

  • @vedantparwal5725
    @vedantparwal5725 8 лет назад +1

    Hey! Your videos are brilliant!
    I have a silly doubt...but when we integrate dv=dx why do we not write v=x+C?

    • @blackpenredpen
      @blackpenredpen  8 лет назад +1

      +Vedant Parwal because we can just put the "+C" at the very end.
      The idea is, the C you mentioned is C1, but then we will get another C2 because we have to integrate again... at the end, C1+C2 is still a constant...

    • @vedantparwal5725
      @vedantparwal5725 8 лет назад

      +blackpenredpen Yup.....I tried it out....the C1 cancels out....Thanks for your help! You are great!

    • @carultch
      @carultch Год назад

      ​@@vedantparwal5725 There are cases where you can strategically use constants of integration in the intermediate steps of integration by parts. Most of the time, we just keep it simple by letting the constant be zero, because we just need *A* function that is the antiderivative of the entry of the previous row, and not *the* function.
      Here's an example where it is strategic to keep the constant of integration:
      Given: integral x*arctan(x) dx
      Setup the IBP table with arctan(x) differentiated, and x integrated. When we integrate x, use +B as the arbitrary constant of integration. This B has nothing to do with the +C we'll add at the end, hence a different letter choice.
      S ___ D __________ I
      + __ atan(x) _____ x
      - __ 1/(1 + x^2) __ 1/2*x^2 + B
      Connect signs with each D-column entry, and connect with the next row down in the I-column. Connect across the final row with integration.
      (1/2*x^2 + B)*atan(x) - integral (1/2*x^2 + B)/(1 + x^2) dx
      Notice that if we let B = 1/2, we can form a term that will cancel, so that we are just integrating a constant:
      (1/2*x^2 + 1/2)*atan(x) - integral (1/2*x^2 + 1/2)/(1 + x^2) dx
      1/2*(x^2 + 1)*atan(x) - 1/2*integral (x^2 + 1)/(1 + x^2) dx
      1/2*(x^2 + 1)*atan(x) - 1/2*integral 1 dx
      And we have our final result:
      1/2*(x^2 + 1)*atan(x) - 1/2*x + C

  • @MRBYRNO2505
    @MRBYRNO2505 5 лет назад

    i guess thats the beauty of maths so many methods and one answer

  • @sasukezueiro8982
    @sasukezueiro8982 2 года назад +1

    Is there a way to do this by the DI method?

    • @carultch
      @carultch Год назад +1

      Yes.
      The general result you'll get, for integrating ln(x)^n, will be:
      [sum of (-1)^k * n!/(n - k)! * x*ln(x)^(n - k), from k = 0 to n] + C
      For the case of integral ln(x)^2 dx:
      Let u = ln(x), thus du = 1/x dx
      Solve for dx:
      dx = x du
      Translate to the u-world:
      integral u^2 * x dx
      Recall our definition of u, and invert it to translate the straggling x to the u-world:
      u = ln(x), thus x = e^u
      The integral in the u-world becomes:
      integral u^2 * e^u du
      Construct IBP table, with u^2 in the D-column, and e^u in the I-column:
      S ___ D ____ I
      + ___ u^2 __ e^u
      - ___ 2*u __ e^u
      + ___ 2 ____ e^u
      - ___ 0 ____ e^u
      Connect S & D entries in each row, with the I-column entry from the next row down. The final row annihilates to zero, so we're done constructing rows. And add it up, and add +C:
      e^u * [u^2 - 2*u + 2] + C
      Translate back to the x-world, and we're finished:
      x*[(ln(x))^2 - 2*ln(x) + 2] + C

  • @gelbkehlchen
    @gelbkehlchen 4 месяца назад

    Solution:
    The first integral: ∫[ln(x)]²*dx = ∫[ln(x)]²*1*dx =
    ------------------------------------
    Solution by partial integration:
    Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states:
    (u*v)’ = u’*v+u*v’ |-u’*v ⟹
    (u*v)’-u’*v = u*v’ ⟹
    u*v’ = (u*v)’-u’*v |∫() ⟹
    ∫u*v’*dx = u*v-∫u’*v*dx
    ------------------------------------
    = [ln(x)]²*x-∫2*ln(x)*1/x*x*dx = [ln(x)]²*x-2*∫ln(x)*1*dx
    = [ln(x)]²*x-2*[ln(x)*x-∫1/x*x*dx] = [ln(x)]²*x-2*ln(x)*x+2*∫dx
    = [ln(x)]²*x-2*ln(x)*x+2*x+C
    Checking the result by deriving:
    {[ln(x)]²*x-2*ln(x)*x+2*x+C}’ = 2*ln(x)*1/x*x+[ln(x)]²-2*1/x*x-2*ln(x)+2
    = [ln(x)]² everything okay!
    The second integral: ∫ln(x²)*dx = ∫ln(x²)*1*dx =
    ------------------------------------
    Solution by partial integration:
    Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states:
    (u*v)’ = u’*v+u*v’ |-u’*v ⟹
    (u*v)’-u’*v = u*v’ ⟹
    u*v’ = (u*v)’-u’*v |∫() ⟹
    ∫u*v’*dx = u*v-∫u’*v*dx
    ------------------------------------
    = ln(x²)*x-∫1/x²*2x*x*dx = ln(x²)*x-2*∫dx
    = ln(x²)*x-2*x+C
    Checking the result by deriving:
    {ln(x²)*x-2*x+C}’ = 1/x²*2x*x+ln(x²)-2 = 2+ln(x²)-2 = ln(x²) everything okay!

  • @theeleganttv3608
    @theeleganttv3608 6 лет назад

    thanks thats realy helped me

  • @chillace6818
    @chillace6818 3 года назад

    it helps alot nice vid.

  • @Sana-zm3tn
    @Sana-zm3tn 5 лет назад +1

    Why can you take the 2 outside for ln(x^2)? Won't you get 2ln(x), isn't that a different equation?

    • @ema7956
      @ema7956 5 лет назад

      its a law of log that was used there.263776937377

    • @Sana-zm3tn
      @Sana-zm3tn 5 лет назад

      elliot machiridza oh so it's just a rule? Thank you

  • @Kanal263
    @Kanal263 2 года назад

    Can (ln(x))^3 be integrate this way too?

  • @MRBYRNO2505
    @MRBYRNO2505 5 лет назад

    i just let u=Ln(x) such that du/dx=1/x where x=e^u, so you get the integral of (u^2xe^u) you use IBP you Differentiate the u^2 and integrate the e^u, it takes a 2 step IBP where uv-Intgrl(v(du/dx)) needs an IBP itself but you get the same answer

  • @bryangonzalez6571
    @bryangonzalez6571 9 лет назад

    you are a real hero

  • @icisne7315
    @icisne7315 6 лет назад +2

    I would use a U-sub with u=lnx and x=e^u and with that I could get dx= e^u so with that in mind I used the D.I. method to get the answer super easy

  • @tc6192
    @tc6192 9 лет назад

    my hero.

  • @wlademirbraz9424
    @wlademirbraz9424 8 лет назад +1

    I love you man!

  • @niokumagai2760
    @niokumagai2760 6 лет назад

    thank you very much!

  • @SrBrotherss
    @SrBrotherss 7 лет назад

    Awesome!

  • @mbonto13
    @mbonto13 2 года назад

    is it possible to use DI method?

  • @eliyale8867
    @eliyale8867 9 лет назад +1

    Keep the good work

    • @blackpenredpen
      @blackpenredpen  9 лет назад +1

      +Eli Yale Thanks for the support and I will!

  • @iandareopal
    @iandareopal 5 лет назад

    How come you can not simply let u = ln(x) without integrating by parts? clearly 1/3 ln(x)^3 would have been the wrong answer but what clued you into knowing you would need to integrate by parts?

    • @brucewayne4172
      @brucewayne4172 5 лет назад +2

      because the derivative of u in that case would be du = 1/x, and there is no 1/x in the equation to be replaced by the du. because of this, you have an extra 1/x in the equation after you change from x to u.

  • @MrCubeform
    @MrCubeform 6 лет назад

    Great video

  • @Nur-hi5ro
    @Nur-hi5ro 9 лет назад

    Thank you so much!

  • @yencontreras1991
    @yencontreras1991 9 лет назад

    omg thanks 👍👍👍👍