A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation

Поделиться
HTML-код
  • Опубликовано: 19 дек 2024

Комментарии • 20

  • @maths01n
    @maths01n День назад +3

    Added my subscription ❤❤my fellow Mathematician content creator 🎉🎉

    • @SALogics
      @SALogics  День назад +1

      Thanks and welcome! ❤

  • @patk5724
    @patk5724 День назад +2

    Very well explained in a clear concise way to abbreviate the lambert w function structure identity... even though l haven't read or get myself abreast to the lambert w function, l really understand your clarity in explanation... Many have race the details etc.

    • @SALogics
      @SALogics  День назад +1

      Thanks for liking! ❤

  • @dougnettleton5326
    @dougnettleton5326 12 часов назад

    2^(x-1) = 2x
    => 2^x / 2 = 2x
    => 2^x = 4x
    => x × log base 2(2) =
    log base 2 (4x)
    => x = 2 + log base 2(x)
    => x = 4, since log base 2(4) is 2 and 2 + 2 is 4.

  • @ronaldnoll3247
    @ronaldnoll3247 День назад +2

    X(1) = 0.3099 or x(2) = 4.0

  • @فیروزاهنگری
    @فیروزاهنگری День назад +1

    2^(x-1)×1/2=(2x)×1/2
    2^(x-2)=x , [2^(x-2)]^1/(x-2)=x^1/(x-2)
    2=x^1/(x-2) , 4^1/2=x^1/(x-2)
    4^1/(4-2)=x^1/(x-2) , x=4

    • @SALogics
      @SALogics  День назад +1

      Very nice! ❤❤

  • @prollysine
    @prollysine 2 дня назад +2

    W(-4*ln2*e^(-4*ln2))=-ln(4x)*e^(-ln(4x)) , -4*ln2==-ln(4x) , /*(-1) , ln16=ln4x , 4x=16 , x1=4 , test x1 , 2^3=8 , 2*4=8 , OK ,
    W(-ln2/4)=-ln(4x) , x=e^(-W(-ln2))/4 , x2=~ 0.309907 , 0.619814=0.619814 , OK ,

  • @trojanleo123
    @trojanleo123 2 дня назад +1

    x = 4

  • @AClassOldie
    @AClassOldie 17 часов назад

    how are some getting x= 0.3099?

  • @dougmarshall4010
    @dougmarshall4010 День назад +1

    X = 4

  • @greydawndewer
    @greydawndewer День назад +1

    x=4