Q no1(5).Solve the following pair of linear equations by the substitution method.

Поделиться
HTML-код
  • Опубликовано: 11 фев 2025
  • The substitution method is a way to solve a pair of linear equations by expressing one variable in terms of the other and then substituting it into the second equation. Here’s a step-by-step guide to solving a pair of linear equations using this method:
    Steps for Solving by Substitution Method
    Let’s consider the system of equations:
    ax+by=cax + by = cax+by=c dx+ey=fdx + ey = fdx+ey=f
    1. Express one variable in terms of the other
    o Pick one of the equations and solve for one variable in terms of the other.
    o Suppose we solve for xxx in terms of yyy: x=some expression in terms of yx = \text{some expression in terms of } yx=some expression in terms of y
    2. Substitute into the second equation
    o Replace xxx in the second equation with the expression obtained in Step 1.
    o This will give an equation with only one variable (yyy).
    3. Solve for the remaining variable
    o Solve the equation obtained in Step 2 to get the value of yyy.
    4. Find the value of the other variable
    o Substitute the value of yyy back into the equation found in Step 1 to get xxx.
    5. Write the final solution
    o The values of xxx and yyy form the solution (x,y)(x, y)(x,y).
    ________________________________________
    Example
    Solve the system of equations using the substitution method:
    x+2y=10x + 2y = 10x+2y=10 3x−y=53x - y = 53x−y=5
    Step 1: Express one variable in terms of the other
    Solve for xxx from the first equation:
    x=10−2yx = 10 - 2yx=10−2y
    Step 2: Substitute into the second equation
    Substituting x=10−2yx = 10 - 2yx=10−2y into 3x−y=53x - y = 53x−y=5:
    3(10−2y)−y=53(10 - 2y) - y = 53(10−2y)−y=5
    Step 3: Solve for yyy
    Expanding:
    30−6y−y=530 - 6y - y = 530−6y−y=5 30−7y=530 - 7y = 530−7y=5 −7y=−25-7y = -25−7y=−25 y=257y = \frac{25}{7}y=725
    Step 4: Solve for xxx
    Substituting y=257y = \frac{25}{7}y=725 into x=10−2yx = 10 - 2yx=10−2y:
    x=10−2×257x = 10 - 2 \times \frac{25}{7}x=10−2×725 x=10−507x = 10 - \frac{50}{7}x=10−750 x=707−507x = \frac{70}{7} - \frac{50}{7}x=770−750 x=207x = \frac{20}{7}x=720
    Final Answer
    (207,257)\left(\frac{20}{7}, \frac{25}{7}
    ight)(720,725)
    This is the solution to the given system of equations using the substitution method.
    #MathTips
    • #MathTutorial
    • #PrimeFactorization
    • #LearnMath
    • #MathSkills
    • #Factorization
    • #MathEducation
    • #STEMLearning
    • #StudyTips
    • #MathHelp
    • #EducationForAll
    • #FindFactors
    • #PrimeNumbers
    • #MathProblemSolving
    • #MathMadeEasy
    • #MathIsFun
    • #MathGenius
    • #MathSimplified
    • #PrimeFactorization
    • #FindFactors
    • #MathTutorial
    • #MathHelp
    • #FactorizationMethod
    • #LearnMath
    • #MathEducation
    • #MathForKids
    • #MathMadeEasy
    • #HowToMath
    • #MathForStudents
    • #StudyWithMe
    • #MathBasics
    • #MathSkills
    • #MathIsFun
    • #EasyMathTricks
    • #MathExplained
    • #SimpleMath
    • #RUclipsLearning
    • #EducationalContent
    • #STEMEducation
    1. #PrimeFactorization
    2. #FindFactors
    3. #MathTutorial
    4. #MathHelp
    5. #FactorizationMethod
    6. #LearnPrimeFactors
    7. #BasicMathSkills
    8. #PrimeNumbersExplained
    9. #FactorsAndMultiples
    10. #MathExplained
    11. #PrimeFactorizationForKids
    12. #MathTipsAndTricks
    13. #HowToFactorize
    14. #StepByStepMath
    15. #PrimeFactorizationSteps
    16. #SimpleFactorization
    17. #MathFundamentals
    18. #PrimeNumbersTutorial
    19. #FindingFactors
    20. #MathConcepts
    21. #MathEducation
    22. #LearnMathOnline
    23. #MathForBeginners
    24. #MathForStudents
    25. #MathLearningMadeEasy
    26. #EducationalMathContent
    27. #STEMEducation
    28. #MathBasicsForKids
    29. #MathPractice
    30. #MathLearningTips
    31. #StudyMathOnline
    32. #MathLearners
    33. #MathAcademy
    34. #EducationForAll
    35. #MathStudyGuide
    36. #LearningPrimeFactorization
    37. #MathStepByStep
    38. #StudyWithMe
    39. #EasyMathForBeginners
    40. #MathLessons
    41. #EasyMathTricks
    42. #MathSolutions
    43. #QuickMathTips
    44. #MathShorts
    45. #MathVideos
    46. #OnlineMathHelp
    47. #LearnWithFun
    48. #BasicMathConcepts
    49. #RUclipsLearning
    50. #TutorialForKids
    51. #ProblemSolvingSkills
    52. #MathFormulas
    53. #FactorizationEasyWay
    54. #EasyMathForKids
    55. #LearnStepByStep
    56. #BestMathTutorials
    57. #MathGuide
    58. #QuickMathSolution
    59. #EasyToLearnMath
    60. #BasicArithmetic
    61. #MathIsFun
    62. #FunMathLearning
    63. #LearnWithJoy
    64. #KidsMathFun
    65. #InteractiveMath
    66. #FunWithNumbers
    67. #EasyAndFunMath
    68. #MathChallenge
    69. #NumbersMadeEasy
    70. #CoolMath
    71. #MathForEveryone
    72. #MathMagic
    73. #FunLearningMath
    74. #SimpleMathTricks
    75. #LearnAndPlay
    76. #EnjoyMath
    77. #MathSkillsForLife
    78. #QuickAndEasyMath
    79. #MathMadeSimple
    80. #MathExploration
    81. #RUclipsMath
    82. #RUclipsEducation
    83. #RUclipsLearningChannel
    84. #LearnWithRUclips
    85. #OnlineLearning
    86. #RUclipsStudy
    87. #HowToVideos
    88. #EducationOnRUclips
    89. #StudyOnRUclips
    90. #BestTutorialVideos
    91. #EducationalContentCreator
    92. #MathRUclipsChannel
    93. #LearnMathOnRUclips
    94. #RUclipsForKids
    95. #MathContentCreator
    96. #MathLearningPlatform
    97. #EducationRUclips
    98. #StudyWithRUclips
    99. #RUclipsLessons
    100#RUclipsForLearning

Комментарии •