Nullspace Column Space and Rank

Поделиться
HTML-код
  • Опубликовано: 4 дек 2024

Комментарии •

  • @blackpenredpen
    @blackpenredpen 5 лет назад +273

    Thanks, I am taking my linear algebra exam within an hour. I don’t want to say this video is helpful, but this video is super helpful!

    • @drpeyam
      @drpeyam  5 лет назад +26

      Hahaha

    • @wkingston1248
      @wkingston1248 5 лет назад +21

      I hope you already passed your LA exam years ago lol.

    • @ssdd9911
      @ssdd9911 5 лет назад +4

      i m surprised that u could find time to take linear algebra despite ur busy schedule

    • @awesomecodeyay8382
      @awesomecodeyay8382 2 года назад +3

      wait, I thought you were a university professor? Why are you taking Linear Algebra ??

    • @Apuryo
      @Apuryo Год назад

      I actually have the exam in three hours 💀

  • @davidc.7305
    @davidc.7305 4 года назад +73

    There's no greater feeling than clicking on a video and having all your doubts and questions washed away in one sitting. Thank you, this was extremely helpful!

  • @nantech431
    @nantech431 9 месяцев назад +5

    There's no greater feeling than clicking on a video and having all your doubts and questions washed away in one sitting. Thank you, this was extremely helpful!
    Thank you sir!

    • @drpeyam
      @drpeyam  9 месяцев назад +2

      Happy to help!

  • @Sand7Clipper
    @Sand7Clipper Год назад +13

    "every answer in linear algebra is row reduction"
    Exactly what I was thinking! Thank you sir for making cramming fun and effective 👏

  • @ThinkDifferentlier
    @ThinkDifferentlier 5 лет назад +26

    meat(A) + fat(A) = steak(A)

  • @cemcalsar3112
    @cemcalsar3112 3 года назад +8

    I am watching this again and again.It is masterpiece,you explained everything in 20 munite that my prof. couldnt explain to me in 3 weeks.Thank you so much,Sir

    • @cemcalsar3112
      @cemcalsar3112 3 года назад

      ı am here before the every linear algebra exam😂😂

  • @picnicbros
    @picnicbros 4 года назад +6

    Thank you so much! This video cleared the confusing I was having. My professor just threw the formula for rank nullity theorem and I couldnt understand why it was like that. This video explained it nicely and added a gag to it too. Wish I had you as my professor!

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 5 лет назад +6

    I liked the M and N acronyms rule. Thank you very much for this lecture.

  • @pinkkitty6553
    @pinkkitty6553 Год назад +1

    thank you so much, you saved my life.

  • @kagamitaiga4381
    @kagamitaiga4381 Год назад

    Honestly! This is so much helpful...I have my LA exam in an hour and with no preparation, I just watched this video now and gosh it felt good...

  • @onira316
    @onira316 2 года назад +1

    I actually do have an linear algebra exam in an hour and needed this video so badly !

  • @iscotwori6905
    @iscotwori6905 Год назад +2

    😂😂😂 the way he began am literally two hours away from my exam

  • @abdulnafayazam3213
    @abdulnafayazam3213 2 года назад

    What a top G. Huge respect for you brother

  • @Tkc__
    @Tkc__ 11 месяцев назад

    Bro you’re too good at teaching this concept… I’m crystal clear now, thx a lot!

    • @drpeyam
      @drpeyam  11 месяцев назад

      Thank you :3

  • @codycrary7149
    @codycrary7149 3 года назад +6

    Thank you so much! I love your energy and enthusiasm for math!

  • @coolpopk
    @coolpopk 4 года назад +1

    Thanks for posting this! I have a linear algebra final next week and I was stressing over this topic. Thank you!

  • @killer4791
    @killer4791 Год назад

    + Respect
    Need more enthusiastic teachers/lecturers/professors like you
    May Lord Shiva Bless you.

  • @wiz1537
    @wiz1537 Год назад

    What a life saver! I wish i saw this video earlier,, I have my la exam tomorrow and i was still having hard time understanding all those concepts,, and this single video untangled everything in my brain:) You r not even explaining in my mother tongue but you got me better than my own professor who speaks the same language as me hahaha
    Thank u so much!!!!

  • @terminal9229
    @terminal9229 3 года назад +2

    I don't know why his way of teaching makes me happy ...Anyways thanks for clear explanation of concepts .

  • @JordzzO
    @JordzzO 42 минуты назад

    you are the goat mate thank you so much your teaching is incredible

  • @cgfam5256
    @cgfam5256 4 года назад +2

    Thank you so much, sir! You clarified my confusion hell out of me!

  • @Jessi-lw3iw
    @Jessi-lw3iw 6 месяцев назад

    Thanks for the amazing video ! I found hope in linear algebra again !

    • @drpeyam
      @drpeyam  6 месяцев назад +1

      You are welcome!

  • @lj123-g9d
    @lj123-g9d 2 года назад +1

    So helpful sir. Thank you so much

  • @FarhanObaid-cl7yt
    @FarhanObaid-cl7yt Год назад +1

    Brilliant!! Absolutely Brilliant!

  • @Helena-vb7mw
    @Helena-vb7mw 8 месяцев назад

    Thanks! explaining everything in very simple way

    • @drpeyam
      @drpeyam  8 месяцев назад

      You're welcome!

  • @mnstrnmocutsy5441
    @mnstrnmocutsy5441 3 года назад

    u make maths so interesting. thanks Sir. it was so clear

  • @shymaamajeed8587
    @shymaamajeed8587 3 года назад

    Realy i like linear algebra because your explain is very very good thank y so much

  • @melikekaralar
    @melikekaralar Год назад

    your energyyyyy wake me up!!

  • @aztjar9425
    @aztjar9425 2 года назад

    Your way of teaching is so good👍

  • @mariamacamaraderie2613
    @mariamacamaraderie2613 Год назад

    thank you so much, this was an eye opener.

  • @kamleshraghuwanshi4634
    @kamleshraghuwanshi4634 5 лет назад

    You are so sweet...
    You explained very easily, the most confusing topic for me in linear algebra.

  • @sazer2411
    @sazer2411 6 месяцев назад

    This channel is soo underrated

    • @drpeyam
      @drpeyam  6 месяцев назад

      Thank you!!!

  • @glennxhose7217
    @glennxhose7217 Год назад

    Ooh I loved this algebra craziness ❤

  • @nerodant85
    @nerodant85 3 года назад

    Thank you for the video Dr. Peyam

  • @Memes_uploader
    @Memes_uploader 3 года назад

    OMG a lot of very useful things with only one example Thank you so much

  • @VengatRamanan01
    @VengatRamanan01 5 лет назад

    Thanks so much...I am going to watch through all your videos

  • @hellozeus
    @hellozeus 4 года назад +1

    Thank you for this video!

  • @tomasgoncalves6736
    @tomasgoncalves6736 10 месяцев назад

    Thank you very much for the video!

  • @mauricioconlaparva
    @mauricioconlaparva 2 года назад

    Thank you! Explained very well

  • @faridbabayev1657
    @faridbabayev1657 5 лет назад

    THANK YOU SO MUCH! God bless you sir!

  • @hofstra7591
    @hofstra7591 3 года назад

    Wow, thanks for the video, your explanations helped me a lot.

  • @himanshuraj5837
    @himanshuraj5837 Год назад

    hey sir thanks a lot you cleared any of my doubts

  • @nonnamoon5960
    @nonnamoon5960 3 года назад

    Thank you for this video😄This video make me pass the exam in linear algebra 😄I like it

  • @benhigh9302
    @benhigh9302 2 года назад

    well done and thank you. extremely clear information and process

    • @drpeyam
      @drpeyam  2 года назад

      Thank you!!!

  • @QuantumByt3s
    @QuantumByt3s 2 года назад

    You are a fantastic teacher :)

  • @AbramFontanilla
    @AbramFontanilla 2 года назад

    Amazing video. Thank you!

  • @azazahmed1842
    @azazahmed1842 2 года назад

    Ok, This was actually a Great video THANK A lot sir!!!!!

  • @luiavalos92
    @luiavalos92 4 года назад

    Wonderful video Professor.

  • @neeldesai501
    @neeldesai501 2 года назад

    super informative thank you!!

  • @dineshashar8255
    @dineshashar8255 5 месяцев назад

    Great Examples

  • @pborah3235
    @pborah3235 5 лет назад +1

    thank you sir...its really helpful 😊

  • @XanderGouws
    @XanderGouws 5 лет назад +3

    4:17 - since those are 3 linearly independant vectors in R³, their span should be all of R³, so wouldn't the columns of the identity matrix also serve as a sufficient basis?

    • @XanderGouws
      @XanderGouws 5 лет назад

      Or any other set of 3 independant vectors

    • @drpeyam
      @drpeyam  5 лет назад

      Yes, of course!

    • @LuisBorja1981
      @LuisBorja1981 5 лет назад +2

      @@drpeyam and what about the 3 L.I. vectors of the row-reduced matrix? Shouldn't they span R3 as well? I didn't understand the "span non-preservation property" between the L.I. vectors in the original matrix vs the L.I. vectors in the row-reduced matrix

  • @10c-p9z
    @10c-p9z Год назад

    you are the best ever.

  • @thenewdimension9832
    @thenewdimension9832 Год назад

    You Made my day ❤

  • @gilmaferrer202
    @gilmaferrer202 4 года назад

    Thank you, you are excellent!

  • @victorosuta2556
    @victorosuta2556 3 года назад

    It's more than super helpful 🙂

  • @ChristopherEvenstar
    @ChristopherEvenstar 5 лет назад +2

    I like how two seemingly parallel lines in this video seem to intersect somewhere off screen to the right. Do the top and bottom of the whiteboard form a basis of the column space of the whiteboard from this angle?

  • @SheeNdegwa-lw4nr
    @SheeNdegwa-lw4nr 7 месяцев назад +1

    I have exactly one hour 2 minutes to take my linear algebra exam 😭

  • @mustafaaljumayli6615
    @mustafaaljumayli6615 11 месяцев назад

    Thank you so much!

  • @ahmad-jd7nh
    @ahmad-jd7nh 2 года назад

    من طرف الدكتور عيسى قيقية , كل الدعم❤❤😘

  • @deepikasharma7736
    @deepikasharma7736 2 года назад

    Thank you so much sir

  • @amardexter9966
    @amardexter9966 3 года назад

    If you imagine 2x1 matrix, the transformation takes 2D space to 1D space, meaning there exists a line in the 2D space that goes to origin after the transformation, meaning that it's the null space of the matrix. Since column space is the output span, and null space is in a sense number of dimensions lost, the N (original number of dimensions) becomes the sum of column space and null space.

  • @josemidebleser8281
    @josemidebleser8281 3 года назад

    THANK YOU!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! so helpful!!!!

  • @francescovitale44
    @francescovitale44 2 года назад

    you are a great man

  • @SmileyHuN
    @SmileyHuN 5 лет назад +3

    Awww we just learned rank recently, vector system's rank, rank of a linear function and ofc matrix rank. Also the Kronecker rank theorem and so on ^_^

  • @pranavgandhi9224
    @pranavgandhi9224 4 года назад

    Amazing sir..... thankyou 👍

  • @zacharietelles7626
    @zacharietelles7626 2 года назад

    Very helpful thanks!

    • @drpeyam
      @drpeyam  2 года назад

      You’re welcome!

  • @mohamedshahin6177
    @mohamedshahin6177 4 года назад

    thank you very much

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 года назад

    thank you

  • @toughconstruction5044
    @toughconstruction5044 5 лет назад +3

    RoWs and nOse

    • @drpeyam
      @drpeyam  5 лет назад +1

      Columns Schmolumns 😂

  • @kr4156
    @kr4156 8 месяцев назад +1

    00:13 I have the exam in an hour 😂😂

  • @nitinshrinivas5115
    @nitinshrinivas5115 3 года назад

    THank you for this vedio.... :)

  • @tabarakalmosawi6659
    @tabarakalmosawi6659 4 года назад

    Many thanks!!!

  • @nihalsahil9074
    @nihalsahil9074 Год назад

    Thanks sir

  • @fadibenzaima5348
    @fadibenzaima5348 5 месяцев назад

    Is there any video that explains these concepts and why row reduction works geometrically ?

    • @drpeyam
      @drpeyam  5 месяцев назад

      You can check out the playlist!!

  • @mardzj
    @mardzj 4 года назад

    4:04 Row reduction destroys span? Why, columns 1, 3 and 5 are Linear independent and span R3 just like before row reduction
    Is the span of the matrix all 5 columns?

    • @drpeyam
      @drpeyam  4 года назад

      Yeah but this example is just a coincidence

  • @nicolasrios7198
    @nicolasrios7198 5 лет назад +1

    Dr. Peyam should get waves 🌊

  • @yousefmayeli7584
    @yousefmayeli7584 4 года назад

    First thanks it was very useful second I got headache for camera’s angle

  • @naturelover82003
    @naturelover82003 3 года назад

    lot of thanks🥰🥰

  • @Smoothcurveup52
    @Smoothcurveup52 Год назад

    Thanku sir

  • @MoooGta-de1xb
    @MoooGta-de1xb Год назад

    How are you teaching sooo good sir

    • @drpeyam
      @drpeyam  Год назад +1

      Awwwww thank you!!!

  • @briankichini7380
    @briankichini7380 5 лет назад

    yea the video is super super good

    • @drpeyam
      @drpeyam  5 лет назад

      Thanks so much!

  • @SauravKumar-12354
    @SauravKumar-12354 10 месяцев назад

    sir , why didnt you wrote the simplified matrix in row space span ? u said it preserves the span .

  • @renardtahar4432
    @renardtahar4432 3 года назад

    very nice!

  • @glennxhose7217
    @glennxhose7217 Год назад

    Tell you what. This video saved my test 2😂. Took something of 2 weeks into 20 minutes 😂

  • @sarimshafiq8826
    @sarimshafiq8826 3 года назад

    I was watching etc etc n etc then found it now I regret why didn't I found it earlier.

  • @keldonchase4492
    @keldonchase4492 Месяц назад

    Hi Dr Peyam!
    If you have time, I was wondering if you could help me prove two things regarding column spaces and null spaces.
    I’m supposed to prove Nul(B) ⊂ Nul(AB).
    Here’s my attempt at the proof:
    Nul(B) contains all the vectors x that make the homogeneous Bx=0.
    We are allowed to left-multiply both sides by the matrix A.
    ABx = A0
    ABx = 0
    So I think we can say that if Bx=0, then ABx=0.
    If x makes Bx = 0 true, then x makes ABx=0 true.
    If x belongs to the null space of B, then x belongs to the null space of AB.
    Thus, we have proven that Nul(B) ⊂ Nul(AB).
    Is this reasoning correct or flawed?
    I’m also supposed to prove Col(AB) ⊂ Col(A).
    This one is trickier for me.
    Col(AB) contains all the output vectors y such that (AB)x = y.
    By the property of associative matrix multiplication, we are allowed to shift the parenthesis to say A(Bx) = y.
    If (AB)x = y then A(Bx) = y.
    So I’m seeing that if we can use AB to obtain the image vector y, then we can use A to obtain the same image vector y.
    But does this demonstrate that Col(AB) is a subset of Col(A)?
    I’ve been so confused by this for a long time and was wondering if you would be able to help clear up the confusion for me.
    Thank you so much!

  • @macywallace7904
    @macywallace7904 3 года назад

    when you are finding the Col(A) can you use the RREF or do you have to use REF

    • @drpeyam
      @drpeyam  3 года назад

      REF is enough

    • @macywallace7904
      @macywallace7904 3 года назад

      @@drpeyam but can you do rref and the answer be the same?

    • @drpeyam
      @drpeyam  3 года назад

      Yes, since the pivots are still at the same positions

  • @insert_a_good_name_here4585
    @insert_a_good_name_here4585 4 года назад

    Heck, within 30 seconds I feel so called out lol

  • @holys6348
    @holys6348 3 года назад

    for the colspace of A. I think you needed to out "span" of such 3 vectors

  • @Rundas69420
    @Rundas69420 5 лет назад

    I bet that when you play Super Smash Bros, you always go for linear combos.
    These are the best ones :P

    • @drpeyam
      @drpeyam  5 лет назад +1

      Hahaha, of course 😂

  • @joynanjero6236
    @joynanjero6236 Год назад

    The negative nine and positive two... Shouldn't that be positive nine ? Kindly inquiring

    • @drpeyam
      @drpeyam  Год назад

      I think so, see comments

  • @believeinyourself811
    @believeinyourself811 9 месяцев назад

    Bro he is hacker 😮 🔥

  • @lucasmoro8775
    @lucasmoro8775 6 месяцев назад

    valeu paee

  • @mashnoonmayad
    @mashnoonmayad 2 года назад

    how does -7 act as a pivot? Doesn't it need to be 1 to be a pivot?

    • @drpeyam
      @drpeyam  2 года назад

      No pivots can be not equal to 1

  • @somnathkoley7317
    @somnathkoley7317 3 года назад

    Row space and column space be like: I am inevitable.
    Dr peyam: and I am......🤏 🤏Dr peyam.
    Thanks for helping me sir.

  • @Big123456Boi
    @Big123456Boi 5 лет назад

    wow this helped alot!!

  • @manacast324
    @manacast324 2 года назад

    “maybe you have an exam in an hour”
    Me: 😳 he caught me

  • @e2k220
    @e2k220 6 месяцев назад

    thanks xqcL

  • @sharifahmed45
    @sharifahmed45 5 лет назад

    Thanks Dr Peyam, is there anyway you and your team will do a real analysis for those struggling in undergrad schools and introductions of proofs. Thanks as always, and it is a pleasure to watch your output.

    • @drpeyam
      @drpeyam  5 лет назад

      Real Analysis ruclips.net/p/PLJb1qAQIrmmDs56gwp6yeytyy0wxWLac8