Inverse Laplace Transform 04 - First Shifting Theorem with Examples | Completing the Square Method

Поделиться
HTML-код
  • Опубликовано: 19 янв 2025

Комментарии • 25

  • @engineeringclassesbymonika8256

    You can watch same video in Hindi here: ruclips.net/video/dh4-c6RSpOo/видео.html

  • @INDIAN_BENGALI_BOY
    @INDIAN_BENGALI_BOY Год назад +1

    Thank you so much Ma'am 🙏,your informative lecture was as sweet as your voice🙏🙏💐

  • @omveersinghyadav5516
    @omveersinghyadav5516 3 года назад +1

    Its good method very nyc lecture
    We don't have any word to say you thanks

  • @patrickmavhungu9425
    @patrickmavhungu9425 3 года назад +3

    I respect Monika so much.

  • @theplatinum5946
    @theplatinum5946 2 года назад +1

    Best sums 💯 . Thank you mam 🙏

  • @Selvalakshmi-l9d
    @Selvalakshmi-l9d Месяц назад

    Superrrr mam

  • @VIVEKDEWANGAN1991
    @VIVEKDEWANGAN1991 2 года назад

    Thank You So Much Ma'am..

  • @sirobrianamitt1350
    @sirobrianamitt1350 Год назад

    Thank you Mum ❣️

  • @prachipatil5996
    @prachipatil5996 2 года назад +1

    Thank youu mam🌹

  • @Noahmalacad
    @Noahmalacad 3 года назад

    nice explanation ,thanks

  • @srinivassr3826
    @srinivassr3826 3 года назад +1

    Tq you madam

  • @HistoryUnveiled7.0
    @HistoryUnveiled7.0 2 года назад

    Thank you mam ❤️

  • @SindhureshamResham-bd3yr
    @SindhureshamResham-bd3yr 6 месяцев назад

    Super mam

  • @omveersinghyadav5516
    @omveersinghyadav5516 3 года назад

    Thanks mam

  • @LUGENDO-dm6sb
    @LUGENDO-dm6sb 11 месяцев назад

    Thanks mum

  • @SurajKumar-ft5pq
    @SurajKumar-ft5pq 2 года назад

    1/s(quep) laplans invers kya hoga

  • @jasminnipa3605
    @jasminnipa3605 3 года назад

    ধন্যবাদ

  • @goodgoodies5755
    @goodgoodies5755 3 года назад

    Mam can you solve s^2/(s^2+49)(s^2+36)

    • @carultch
      @carultch Год назад

      Given:
      s^2/((s^2 + 49)*(s^2 + 36))
      Set up partial fractions. Two irreducible quadratics with an arbitrary linear expression on top of each one:
      (A*s + B)/(s^2 + 49) + (C*s + D)/(s^2 + 36) = s^2/((s^2 + 49)*(s^2 + 36))
      Multiply to clear denominators:
      (A*s + B)*(s^2 + 36) + (C*s + D)*(s^2 + 49) = s^2
      Expand & Gather:
      (A + C)*s^3 + (B + D)*s^2 + (36*A + 49*C)*s2 + 36*B + 49*D = s^2
      Equate coefficients:
      A + C = 0
      B + D = 1
      36*A + 49*C = 0
      36*B + 49*D = 0
      Solution:
      A = 0, B = 49/13, C = 0, D = -36/13
      Result:
      49/13/(s^2 + 49) - 36/13/(s^2 + 36)
      Arrange each term so that it matches the Laplace transform of sine, thus having 7 and 6 in the numerator respectively;
      7/13 * 7/(s^2 + 49) - 6/13 * 6/(s^2 + 36)
      Take inverse Laplace:
      7/13*sin(7*t) - 6/13*sin(6*t)

  • @HaseebKhan-qz5hd
    @HaseebKhan-qz5hd 2 года назад

    mam 1/2s(s_3) ka inverse Laplace transform bta dy plz

    • @engineeringclassesbymonika8256
      @engineeringclassesbymonika8256  2 года назад +3

      Hi Haseeb Khan. You can solve this question using Partial Fraction Method. You can watch next video under this playlist for the same.
      ruclips.net/video/iWvu4-OoqoY/видео.html

    • @HaseebKhan-qz5hd
      @HaseebKhan-qz5hd 2 года назад

      @@engineeringclassesbymonika8256 thnks

  • @its.rahees
    @its.rahees 3 года назад

    Nice explanation best ever can I get whatsapp for douts if not ok.