How to solve an exponential equation with two different bases

Поделиться
HTML-код
  • Опубликовано: 3 дек 2024

Комментарии •

  • @bprpmathbasics
    @bprpmathbasics  6 месяцев назад +2

    For more examples of how to solve exponential equations from basics to hard, please see ruclips.net/video/K8CQbSD9wis/видео.html

  • @Magst3r1
    @Magst3r1 6 месяцев назад +13

    That is about 3.5965 if anyone was wondering

  • @notrishy
    @notrishy 6 месяцев назад

    This question can also done by taking log both sides, then applying log(m)^n = nlogm. After this seperating all x on one side and constant on other side. The problem is the constant is a bit weird and complex to handle so take it as "c" or something. Then find the value of x in terms of c and substitute the value of c later on. The value of c is actually (log7/log2) with base 10.

  • @padaii
    @padaii 6 месяцев назад +5

    Idk why it bothered me so much that you didn't use the natural log hahahaha. It's been a while for me, but would a natural log answer be easier (or maybe more straightforward) to differentiate/integrate?

  • @Rohitshawarma45
    @Rohitshawarma45 6 месяцев назад +23

    Log 49/15 (56) is crazy bro

    • @ant2902
      @ant2902 6 месяцев назад +3

      16

    • @jamescollier3
      @jamescollier3 6 месяцев назад

      no 3.6 ish

    • @d4v0r_x
      @d4v0r_x 26 дней назад

      so this and that cancel

  • @DARKi701
    @DARKi701 6 месяцев назад +24

    Now It's time to show that the two solutions are actuallt the same

    • @okicek3016
      @okicek3016 6 месяцев назад +8

      So the first solition is (3log(2)+log(7))/(2log(7)-4log(2)) which can be simplified into log(56)/log(49/16). Since both of the logs have the same base we can use the base change formula to get log_49/16(56)

  • @LythMusic
    @LythMusic 5 месяцев назад

    3^x/3^2 = 5^x . 5^4
    3^x/9 = 5^x . 625
    3^x = 5^x . 5625
    3^x/5^x = 5625
    (3/5)^x = 5625
    x = log 3/5 (5625)

  • @bayonn.7145
    @bayonn.7145 6 месяцев назад

    I have a question. So, the first equation could have this resolution? 1/2 . Log(7/4) 56
    By the way, the solution to the second equation is Log(3/5)5625 (but can be 2 . Log(3/5)75).

  • @alexmargrey
    @alexmargrey 6 месяцев назад

    It's always a pleasure to learn thank to you.

  • @Kunal-rj6ji
    @Kunal-rj6ji 6 месяцев назад +6

    log3/5 (5625) ?

    • @kushsaksena6230
      @kushsaksena6230 6 месяцев назад

      Yes

    • @Davis-tl1rc
      @Davis-tl1rc 6 месяцев назад +3

      since 5625 is 75^2, you can further simplify into
      = log 3/5 (75^2)
      = 2 * log 3/5 (75)

  • @robert8552
    @robert8552 6 месяцев назад

    X.ln (49/16)= ln(56)
    X= ln(56)/ln(49/16)
    Why do you want to change the base?

  • @paulwood3460
    @paulwood3460 6 месяцев назад

    Luvley jubbley 👍👍👏👏

  • @OlympiadMentor
    @OlympiadMentor 6 месяцев назад

    Amazing ❤

  • @dev3560
    @dev3560 6 месяцев назад

    Answer for the last equation is log_3/5(625/9) or approx -8.301

    • @Davis-tl1rc
      @Davis-tl1rc 6 месяцев назад

      the 625/9 is actually a 625*9

  • @Otter-jh2zg
    @Otter-jh2zg 6 месяцев назад

    great video

  • @ant2902
    @ant2902 6 месяцев назад

    i'm not too good at exponents.
    maybe x = log5(5625) ?

  • @Ahmad-yi6d
    @Ahmad-yi6d 6 месяцев назад +2

    ❤❤❤

  • @Twi_543
    @Twi_543 6 месяцев назад

    interesting how I watched the originally vid this morning

  • @wdobni
    @wdobni 6 месяцев назад +1

    there should be a way to solve this using e