A Nice Radical Equation | 95% Failed To Solve!

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 11

  • @潘博宇-k4l
    @潘博宇-k4l Месяц назад +1

    X1=21, X2=21+(2)^(1/2)i, X3=21-(2)^(1/2)i.

  • @souzasilva5471
    @souzasilva5471 Месяц назад +1

    Acho uma grande falta quando o professor não indica o conjunto em questão.(I think it's a big mistake when the teacher doesn't indicate the set in question.)

  • @9허공
    @9허공 Месяц назад +2

    let t = x - 22, (x - 20)^5 - 2 = (x - 22)^5,
    => (t + 2)^5 - t^5 - 2 = 10(t^4 + 4t^3 + 8t^2 + 8t + 3) = 10(t + 1)^2*(t^2 + 2t + 3) = 0
    => t = { -1, -1±√2i } => x = { 21, 21±√2i }

  • @averageboulderer
    @averageboulderer Месяц назад

    Substitute x-21=y

  • @raghvendrasingh1289
    @raghvendrasingh1289 Месяц назад +1

    Let y = x-21
    (y+1)^5 - 2 = (y-1)^5
    y^5^+5y^4+10y^3+10y^2+5y-1 = y^5 -5y^4 +10y^3-10y^2+5y-1
    y^2 ( y^2+2) = 0
    y = 0 , y= i√2 , y= - i√2
    x=21 , x= 21+i√2 , x= 21-i√2

  • @Quest3669
    @Quest3669 Месяц назад

    X= 21

  • @RashmiRay-c1y
    @RashmiRay-c1y Месяц назад +1

    Let x-20=a and [(x-20)^5 -2]^1/5=b. Thus, a-b=2 and a^5-b^5=2 > (a^5-b^5)/(a-b) = a^4+b^4+ab(a^2+b^2)+a^2hb^2=1. Let ab=t. Given a-b=2, a^2+b^2=2(t+2) and a^4+b^4=2(t^2+8t+8). So, 2(t^2+8t+8) + 2t(t+2) + t^2=1 > 5t^2+20t+15=0 > (t+1)(t+3)=0 > t=-1, -3. t=ab=-3 > a^2-2a+3=0, with no real solutions. t=-1 > (a-1)^2=0 > a=x-20 = 1 > x=21.

  • @Chacal0152
    @Chacal0152 Месяц назад

    x = a+20 , a⁵-2 = y⁵=> a⁵-y⁵ = 2, y = x-22 = a-2=> a-y = 2 => a²+y² = 4 +2ay ,(a-y)³ =a³-y³-3ay(a-y)
    a³-y³ = 8+6ay => (a³-y³)(a²+y²) = (8+6ay)(4 +2ay)=> a⁵-y⁵-a²y²(y-a) = 12a²y²+40ay+32
    10a²y²+40ay+30 = 0 = 10(a²y²+4ay+3) = 10 (ay+3)(ay+1), y = a-2 => a(a-2)+3 = 0 =(a-1)²+2 >0
    or a(a-2)+1 = 0 => a = 1 => x = a+20 = 21

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    x^5;(x^5 ➖ 320) ➖ 2=( x^5 )^2➖ 315 ➖ 2={x^25 ➖ 315} ➖ 2=290 ➖(2)^2={290 ➖ 4}=286 10^20^2^43 10^2^102^43^1 2^5^2^2^5^2^1^1 1^1^1^1^1^2 1^2 (x ➖ 2x+1).(x)^2 ➖ (22)^2={x^2 ➖484}=482 10^40^2^42 10^40^2^6^7 10^4^10^2^6^7 2^5^4^2^5^2^6^7^1 1^1^4^1^1^1^3^21^1 2^2^3^2 1^13^2 3^2 (x ➖ 3x+2).

  • @key_board_x
    @key_board_x Месяц назад

    ⁵√[(x - 20)⁵ - 2] = x - 22
    {⁵√[(x - 20)⁵ - 2]}⁵ = (x - 22)⁵
    (x - 20)⁵ - 2 = (x - 20 - 2)⁵
    (x - 20)⁵ - 2 = [(x - 20) - 2]⁵ → let: p = x - 20
    p⁵ - 2 = [p - 2]⁵
    p⁵ - 2 = (p - 2)².(p - 2)².(p - 2)
    p⁵ - 2 = (p² - 4p + 4).(p² - 4p + 4).(p - 2)
    p⁵ - 2 = (p⁴ - 4p³ + 4p² - 4p³ + 16p² - 16p + 4p² - 16p + 16).(p - 2)
    p⁵ - 2 = (p⁴ - 8p³ + 24p² - 32p + 16).(p - 2)
    p⁵ - 2 = p⁵ - 8p⁴ + 24p³ - 32p² + 16p - 2p⁴ + 16p³ - 48p² + 64p - 32
    - 2 = - 10p⁴ + 40p³ - 80p² + 80p - 32
    - 10p⁴ + 40p³ - 80p² + 80p - 30 = 0
    p⁴ - 4p³ + 8p² - 8p + 3 = 0 → the aim, if we are to continue effectively, is to eliminate terms to the 3rd power
    p⁴ - 4p³ + 8p² - 8p + 3 = 0 → let: p = z - (b/4a) → where:
    b is the coefficient for p³, in our case: - 4
    a is the coefficient for p⁴, in our case: 1
    p⁴ - 4p³ + 8p² - 8p + 3 = 0 → let: p = z - (- 4/4) → p = z + 1
    (z + 1)⁴ - 4.(z + 1)³ + 8.(z + 1)² - 8.(z + 1) + 3 = 0
    (z + 1)².(z + 1)² - 4.(z + 1)².(z + 1) + 8.(z² + 2z + 1) - 8z - 8 + 3 = 0
    (z² + 2z + 1).(z² + 2z + 1) - 4.(z² + 2z + 1).(z + 1) + 8z² + 16z + 8 - 8z - 8 + 3 = 0
    (z⁴ + 2z³ + z² + 2z³ + 4z² + 2z + z² + 2z + 1) - 4.(z³ + z² + 2z² + 2z + z + 1) + 8z² + 16z + 8 - 8z - 8 + 3 = 0
    (z⁴ + 4z³ + 6z² + 4z + 1) - 4.(z³ + 3z² + 3z + 1) + 8z² + 8z + 3 = 0
    z⁴ + 4z³ + 6z² + 4z + 1 - 4z³ - 12z² - 12z - 4 + 8z² + 8z + 3 = 0
    z⁴ + 2z² = 0
    z².(z² + 2) = 0
    First case: z² = 0
    z = 0 → recall: p = z + 1
    p = 1 → recall: p = x - 20
    x = p + 20
    → x = 21
    Second case: (z² + 2) = 0
    z² + 2 = 0
    z² = - 2
    z² = 2i²
    z = ± i√2 → recall: p = z + 1
    p = 1 ± i√2 → recall: p = x - 20
    x = p + 20
    x = 1 ± i√2 + 20
    → x = 21 ± i√2