A Nice Algebra Problem | Math Olympiad | A Nice Math Equation

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 6

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 3 дня назад +1

    Isolate a so that a = -5b/(6 - 7b)
    Since a, b, are + integers, a = -5b/(6 - 7b) >/= 1
    Then -5b 2b = 6 . . . => b

    • @nathanc6516
      @nathanc6516 3 дня назад +1

      That doesn't make sense to me. I isolated a as 5b/7b-6. Not sure where you got those negative signs, also hard to follow what you did there.

    • @musicsubicandcebu1774
      @musicsubicandcebu1774 3 дня назад +1

      @@nathanc6516 Yeah, I should have expressed 'a' as 5b/7b-6. Because the solutions are positive integers we know that 5b/7b-6 is at least 1. So set >/= to one and multiply bs by 7b-6 to obtain the inequality . . . 5b >/= 7b-6 . . . then putting the b's on one side . . . 6 >/= 2b . . . 3 >/= b . . . same as b

    • @SALogics
      @SALogics  3 дня назад +2

      Very nice! ❤

    • @SALogics
      @SALogics  3 дня назад +2

      Please watch first 2 minutes carefully and pause the video when needed, I hope you understand ❤

    • @musicsubicandcebu1774
      @musicsubicandcebu1774 2 дня назад

      @@SALogics Noted, thanks