Limit at infinity (of square root rational functions as x approaches negative infinity)

Поделиться
HTML-код
  • Опубликовано: 26 янв 2025

Комментарии • 80

  • @deliveringIdeas
    @deliveringIdeas 3 года назад +25

    I absolutely adore this man and his ability to teach. I LOVE solving problems like this because I know how to do them now, thanks to him. He makes math so comedic, natural, interesting, and engaging. Thanks so much!

  • @choobababoo905
    @choobababoo905 3 года назад +10

    omg, I would have never thought I would binge-watch the calculus video. I owe you some of my tuition

    • @PrimeNewtons
      @PrimeNewtons  3 года назад +3

      This is the funniest comment ever!

  • @joshuaychung
    @joshuaychung Год назад +3

    That last 10 seconds of explaining when to apply the negative sign in a square root situation as the x approaches the negative infinity will be a huge help. Not that it's all that difficult to explain it to yourself over and over again, but in a testing environment, a rule that you can rely on is very comforting.

  • @runtimerror9719
    @runtimerror9719 Год назад +8

    First time visiting your channel, is like it was made just for me

  • @ferrislkpokpa7867
    @ferrislkpokpa7867 4 месяца назад +1

    This is the quality calculus videos I have long been looking for all that years. You are a real asset, no doubt!

  • @jose_w3128
    @jose_w3128 Год назад +3

    This explanation is far clearer than the old one. Thank you.

  • @jonathansimukoko466
    @jonathansimukoko466 2 года назад +5

    when you are good, you are good. no tutor on youtube is like you

  • @blackovich
    @blackovich Год назад +3

    You've put a smile on my face. Thank you!

  • @MahsaOmidmand
    @MahsaOmidmand 2 года назад +3

    I saw lots of videos in this case but you are the best thank you.

  • @adammohamed5256
    @adammohamed5256 Год назад +3

    I wish you were my teacher in my school days. You're really a wonderful teacher. Well done!!

  • @spagomat
    @spagomat Год назад +2

    I'm always queasy working with square roots, but this teacher made me look at things differently - it makes so much sense now! Right after he solved that first equation I seriously wanted to jump up and start clapping.

  • @elizabethknightly2431
    @elizabethknightly2431 2 года назад +9

    Thank you so much, you’re amazing. I was struggling for the last few hours wondering why my answers were wrong only because of the sign. My answers were right but the signs were off. Thank you for everything. I appreciate you and this video so much. I’m a high school student taking calculus. I just subscribed to you. Have a wonderful day. 😊

    • @PrimeNewtons
      @PrimeNewtons  2 года назад +1

      I'm glad the video helped. I appreciate the feedback.

  • @---ex5tt
    @---ex5tt 4 месяца назад

    hi , its the 1st video that I saw in this channel, everything was clear , thank you for this big work!

  • @skimbo.2002
    @skimbo.2002 Год назад +3

    long life to you my perfect teacher

  • @fabiahsultana2604
    @fabiahsultana2604 Год назад +2

    This vedio is so beneficial to me🖤thanks for making such a outstanding vedio❤

  • @andrewkachedwa3164
    @andrewkachedwa3164 2 года назад +3

    This guy is very amazing one , thank you for your great job you have supported me in the world of mathematics 🙏🙏🙏🙏🙏🙏

  • @emidaz_symposium
    @emidaz_symposium Год назад

    Thank you so much! Your work means the world to me!

  • @legend-cy1nd
    @legend-cy1nd 2 года назад +4

    dude thanks you just make everything make sense

  • @aakankshjt6009
    @aakankshjt6009 2 года назад +3

    U r a good guy,

  • @hopebetterfuture9698
    @hopebetterfuture9698 Год назад +4

    Very clear👍

  • @TasnimAhammed-y5u
    @TasnimAhammed-y5u 2 месяца назад +1

    love from Bangladesh 🖤

  • @m37155ar0cha
    @m37155ar0cha 2 года назад +4

    I love the thumbnail for this video 🤪😵‍💫🤓

    • @PrimeNewtons
      @PrimeNewtons  2 года назад

      Thanks. My daughter took the photo.

  • @y_p7
    @y_p7 3 года назад +7

    I freaking love learning from Will Smith ;)

  • @tshegofatsotau9416
    @tshegofatsotau9416 Год назад +2

    The best❤

  • @KimNafi-p4h
    @KimNafi-p4h Месяц назад

    U a like a prince of math

  • @ryuu-s6c
    @ryuu-s6c Год назад +1

    you're my herooooo❤❤❤

  • @ambikachhikara2154
    @ambikachhikara2154 3 года назад +4

    Nice video!

  • @tomassanchez8387
    @tomassanchez8387 3 месяца назад

    The value under the radical will always be positive. It is the denominator the determines the sign of the limit.

  • @Benard-f9s
    @Benard-f9s 7 месяцев назад

    You're the best ❤ thanks

  • @leanhchung6838
    @leanhchung6838 Год назад +1

    The left problem , second line ??? Factorize the x^3 as you explained at the beginning-> that why (-x)^3 -> it is clearer for students !

  • @surendrakverma555
    @surendrakverma555 10 месяцев назад +1

    Very good. Thanks Sir

  • @maxplank577
    @maxplank577 3 месяца назад

    Sir you are great ❤

  • @andreeaxcx5623
    @andreeaxcx5623 3 года назад +2

    can you please make a video of the Reimann integers and the mean value theorem? thank you! Your videos are very helpful

    • @PrimeNewtons
      @PrimeNewtons  3 года назад +1

      Riemann Integral/Sum: Right/Left Endpoints, Upper Sum, Lower Sum and Midpoint Estimate

    • @joshuakarki5894
      @joshuakarki5894 3 года назад +1

      He has a video coverin Reimann integrals:
      ruclips.net/video/qdifmP6K_j4/видео.html

    • @andreeaxcx5623
      @andreeaxcx5623 3 года назад +1

      thank you!

  • @RajPatel-gi4kt
    @RajPatel-gi4kt 3 года назад +3

    Nice Job

  • @meow11119
    @meow11119 Год назад

    Hey, your videos are amazing. How do you think of making playlists like curriculum for those who just started to learn calculus. I can see that there is already a playlists for calculus, but it looks like all mixed up.

  • @keenkeen5863
    @keenkeen5863 2 года назад +3

    Thank you professor

  • @alimulraji2896
    @alimulraji2896 3 года назад +2

    Very helpful !

  • @Rose-pe1ob
    @Rose-pe1ob 3 года назад +3

    you are great!

  • @saharashara7980
    @saharashara7980 Год назад +3

    طريقة جيدة الشرح

  • @shahzaib9528
    @shahzaib9528 2 месяца назад

    i like your vedios last ten seconds explained well before 10 sec i'm confused

  • @xmelonsandia4308
    @xmelonsandia4308 Год назад +1

    Nice 👍

  • @Tentin.Quarantino
    @Tentin.Quarantino 11 месяцев назад

    Could you simply argue that, for the cubic, any negative value of x will always give a positive number under the square root in the numerator. By taking the sqrt you would take the principle root, thus making the numerator positive overall. The denominator is clearly negative (for sufficiently large x), so you know the limit will be a negative?
    By the same logic, the squared limit is positive over positive, therefore, the limit is also positive.

  • @harendrayegr
    @harendrayegr 7 месяцев назад

    but to remove all confusion, put t=minus x. so we hv lim t tending to +infinity of
    (root(9t^6+t))/-t^3+ 6 which ultimately= -1.
    in second case it is (root(9t^4+t))/ t^2+6 wbich ultimataly becomes +1.

  • @alexei2985
    @alexei2985 Год назад

    Why doesn’t x^3 / x^3 at 6:42 equal -1?

    • @PrimeNewtons
      @PrimeNewtons  Год назад +1

      I think I explained in the video. That is 1

    • @InfoMedia1403
      @InfoMedia1403 Год назад

      ​@@PrimeNewtonsyou didn't explain it. And even if you do, it's not clear

    • @henricovsky9363
      @henricovsky9363 5 месяцев назад +1

      @@InfoMedia1403 why would it be -1? Even if x is negative, it would be a negative number divided by another negative number, which will always become positive

  • @leanhchung6838
    @leanhchung6838 Год назад +2

    => must be replaced by =

  • @Nada-iy7cr
    @Nada-iy7cr Год назад

    Loved this

  • @calebo.
    @calebo. 2 месяца назад

    thank you bro.

  • @ts37924
    @ts37924 Год назад

    Great!.. Thanks!

  • @tahseenbijoy200
    @tahseenbijoy200 Год назад

    Damn!🔥

  • @jessicatorres2862
    @jessicatorres2862 2 года назад +3

    waw

  • @josefriasmacedomota7884
    @josefriasmacedomota7884 5 месяцев назад

    Embora o resultado estejja correto, a explicação esta muito confusa.
    O resultado pode ser obtido naturalmente se fizermos uma mudança de variável
    x = - u, assim o primeiro limite ficará lim[(9x^6-x)^(1/2)/(x^3 +6)] para x tendendo para menos infinito = lim[(9(-u)^6 -(-u))^(1/2)/((-u)^3 +6)]= lim[(9u^6+u)^(1/2)/(6-u^3)] = lim[(9u^6/u^6 +u/u^6)^(1/2)/(6/u^3 - 1)] = lim[(9+1/u^5)^(1/2)/(6/u^3 -1)] = (9 + 0)^(1/2)/(0-1) = 3/(-1) = -3, quando u tende para + infinito

  • @tru-shushu.8703
    @tru-shushu.8703 4 месяца назад

    -> , trying to find that one. =>?. Found.

  • @allusative1609
    @allusative1609 10 месяцев назад

    This still confuses me.

  • @baranazin8785
    @baranazin8785 Год назад +1

    No it is not true😮 at first question you add minas, but the second you do not add minas. although the both of question have even power.

    • @PrimeNewtons
      @PrimeNewtons  Год назад +5

      Hope you understand that math is not about whether you agree or not. It's about whether you are correct. Never stop learning!

    • @baranazin8785
      @baranazin8785 Год назад

      @@PrimeNewtons but still I do not know. thank you.🥺🥰

  • @tru-shushu.8703
    @tru-shushu.8703 4 месяца назад

    I was taught 9/9=1. Gotta re-learn.😂😢😢

  • @Shoongie_s_husband
    @Shoongie_s_husband Год назад

    Life saver 🛟