Justify your answer | Find Blue shaded Triangle area | (Rectangle) |

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 66

  • @Buy_YT_Views_721
    @Buy_YT_Views_721 7 месяцев назад +3

    This video is pure entertainment. ✨

    • @PreMath
      @PreMath  7 месяцев назад

      Thanks for the feedback ❤️🌹

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 7 месяцев назад +4

    X/sin(45°)=4√10/ sin(180°-45°-< DAE). Синус суммы находим по формуле, используя соотношения в ∆AEB.
    AD=x=10.

  • @binondokhaliljustinb.5709
    @binondokhaliljustinb.5709 7 месяцев назад +2

    Another solution!
    If you extend the line DE, then name it point F, you can get the angle BEF, angle BEF is equivalent to angle DEC since they are alternate angle. To get angle BEF, you first need to get angle AEB. Then you can now get the length of EC.

    • @PreMath
      @PreMath  7 месяцев назад +1

      Thanks for the feedback ❤️

  • @jimlocke9320
    @jimlocke9320 7 месяцев назад +2

    As phungpham1725 did, I dropped a perpendicular from D to AE, let's call the intersection F. From the Pythagorean theorem, after finding that BE = 4 (2:24 in the video), AE has length 4√10. We note that

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 7 месяцев назад +2

    1/ EB= 4cm so AE= 4sqrt10
    2/ From D drop the height DH to AE.
    The angle ADH=angle EAB ( the sides are perpendicular) so the two triangles ADH and EAB are similar.
    Label DH= h-> h/AH=AB/AE=12/4=3
    Notice that the triangle DHE is an right isosceles so h= HE-> AH/1= HE/3=(AH+HE)/4=4sqrt10/4
    -> h=3sqrt10 and AH=sqrt10 12:47
    -> DA =sqrt(sqh+sqAH)=sqrt100=10
    -> EC=6-> Area of the blue triangle=36 sq cm

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @waheisel
    @waheisel 7 месяцев назад +2

    An out of the way formula is useful for this one: For two angles that add to 45 degrees (e.g. EAB and CDA), if tan A=a/b then tan D=(b-a)/(b+a). Here a=4 and b=12. So tan D=1/2 and x=6. Here are a couple nice proofs of the formula; ruclips.net/video/TrgQJM1Xkf8/видео.html I love my exciting daily puzzle, Thanks PreMath!

    • @PreMath
      @PreMath  7 месяцев назад +1

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @JLvatron
    @JLvatron 7 месяцев назад +1

    I used trig to solve this.
    I was discouraged by the heavy square roots.

  • @VictorLonmo
    @VictorLonmo 7 месяцев назад +2

    This was a fun question PreMath! I thought I was original by solving it with trig but based on the other comments I am not the only one...

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @prossvay8744
    @prossvay8744 7 месяцев назад +5

    Let BE=x
    Area of the triangle ABE=24cm^2
    1/2(12)(x)=24
    so x=4cm
    Tan(AEB)=12/4=3
    So LAEB=71.57°
    LCED=180-(45+71.57°)=63.43°
    Tan(63.43°)=12/CE
    So CE=6cm
    Area of the Blue triangle=1/2(12)(6)=36cm^2.❤❤❤

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

    • @Irishfan
      @Irishfan 6 месяцев назад

      This is how I would have done this problem right from the start.

  • @peterdavidsalamanca8404
    @peterdavidsalamanca8404 7 месяцев назад +2

    Non-geometry problems please!

    • @PreMath
      @PreMath  7 месяцев назад +1

      Sure! Please keep watching...
      Thanks for the feedback ❤️

  • @mattsta1964
    @mattsta1964 7 месяцев назад +3

    I solved it using trig rather than algebra. Nice algebra solution!

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @adgf1x
    @adgf1x 6 месяцев назад

    h=4,CE=8,ar.blue tr.=12×8/2=48 cm^2

  • @moroofoloruntola199
    @moroofoloruntola199 7 месяцев назад +1

    this can be solved in an easier way than the method here. finding angle AEB =71. then get angle DEC, s 180-45-71. then use tan =Opposite over adjacent then you get x easily and find the blue area

    • @PreMath
      @PreMath  7 месяцев назад +1

      Thanks for the feedback ❤️

  • @MrPaulc222
    @MrPaulc222 4 месяца назад

    I used trig, so there was a tiny rounding error, but I put 36 as it was too close to not be!

  • @nandisaand5287
    @nandisaand5287 2 месяца назад

    I used Trigonometry:
    Angle(EAB)=€=Angle(FEA) {Side/Angle/Side}
    Angle(DEF)=¥=Angle(EDC) {Side/Angle/Side}
    Tan€=4/12
    €=ArcTan(4/12)=18.43°
    €+¥=45°
    ¥=45°-€=26.57°
    Tan¥=(X/12)
    X=12•Tan(26.57°)=6
    Area=½•12•6=36cm²

  • @montynorth3009
    @montynorth3009 7 месяцев назад +2

    Green triangle area = 24.
    1/2 x 12 x EB = 24.
    EB = 4.
    Tan BEA = 12 / 4 = 3.
    Angle BEA = 71.565 degrees.
    Blue triangle.
    Angle DEC = 180 - 71.565 - 45 = 63.435 degrees.
    Tan 63.435 = 12 / CE.
    CE = 12 / 2 = 6.
    Area = 1/2 x 6 x 12 = 36.

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 7 месяцев назад +6

    I take the long way home too cuz it's the scenic route . 🙂

    • @PreMath
      @PreMath  7 месяцев назад +2

      You are blessed😀
      Right way to enjoy the life!
      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 месяцев назад +2

    EB = 48/12 = 4. Let t = angleAEB,
    In triangle ABE: tan(t) = AB/AB = 12/4 = 3
    Let u = angleDEC, We have t + u + 45° = 180°,
    so u = 135° -t and tan(u) = tan(135° -t)
    tan(u) = (tan(135°) - tan(t))/(1 + tan(135°).tan(t))
    = (-1 -3)/(1+ (-1).(3)) =-4/-2 = 2
    In triangle DEC: tan(u) = 2 = DE/EC = 12/EC, sonEC =6
    Finally the area of the blue triangle is (1/2).12.6 = 36.

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @adgf1x
    @adgf1x 7 месяцев назад

    trgl ADE and sq ABCD are having with same baseAD and between same parllelsAD and BC.Area trgl ADE=1/2*area sq ABCD=144/2=72 sq cm.so ar of blue trgl=144-72-24=48 sq cm.ans

  • @unknownidentity2846
    @unknownidentity2846 7 месяцев назад +3

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The green triangle is a right triangle, so we can conclude:
    A(green) = A(ABE) = (1/2)*AB*BE
    ⇒ BE = 2*A(ABE)/AB = 2*(24cm²)/(12cm) = 4cm
    By applying trigonometry we obtain:
    tan(∠AEB) = AB/BE = (12cm)/(4cm)= 3
    tan(∠BED)
    = tan(∠AEB + ∠AED)
    = [tan(∠AEB) + tan(∠AED)]/[1 − tan(∠AEB)*tan(∠AED)]
    = [3 + tan(45°)]/[1 − 3*tan(45°)]
    = (3 + 1)/(1 − 3*1)
    = 4/(−2)
    = −2
    tan(∠CED)
    = tan(∠BEC − ∠BED)
    = [tan(∠BEC) − tan(∠BED)]/[1 + tan(∠BEC)*tan(∠BED)]
    = [tan(180°) − (−2)]/[1 + tan(180°)*(−2)]
    = (0 + 2)/(1 − 0*2)
    = 2
    Now we are able to calculate the area of the blue right triangle:
    tan(∠CED) = CD/CE ⇒ CE = CD/tan(∠CED) = (12cm)/2 = 6cm
    A(blue) = A(CDE) = (1/2)*CD*CE = (1/2)*(12cm)*(6cm) = 36cm²
    Best regards from Germany

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!👍
      Thanks for sharing ❤️🇺🇸

  • @calvinmasters6159
    @calvinmasters6159 7 месяцев назад +5

    I was with you up to EB=4
    Then arc tan 12/4 = 71.6 deg
    180 - 45 - 71.6 = 63.4
    height blue triang = 12/tan 63.4
    = 6
    A(blu) = 6 * 12 / 2 = 36 Enjoyable. Send more.

  • @ChuzzleFriends
    @ChuzzleFriends 6 месяцев назад

    ABCD is a rectangle.
    By the Parallelogram Opposite Sides Theorem, AB = 12.
    A = (bh)/2
    24 = (12 * h)/2
    6h = 24
    h = 4
    So, BE = 4 cm.
    Label CE = x. Then BC = x + 4 cm.
    Draw an altitude of △AED from E to a point F on base AD. This divides rectangle ABCD into two smaller rectangles with a pair of congruent triangles each.
    Because △ABE ≅ △AFE, the area of △AFE is 24 cm².
    A = (bh)/2
    = (12 * x)/2
    = 6x
    Because △DCE ≅ △DFE, the area of △DFE is 6x cm².
    △AFE & △DFE combine to form △AED.
    So, the area of △AED is 6x + 24 cm².
    But then we can also find the area of △AED by using the side-sine area formula.
    Find AE & DE. Use the Pythagorean Theorem.
    a² + b² = c²
    12² + 4² = (AE)²
    (AE)² = 144 + 16
    = 160
    AE = √160
    = (√16)(√10)
    = 4√10
    12² + x² = (DE)²
    (DE)² = x² + 144
    DE = √(x² + 144)
    A = 1/2 * a * b * sinC
    = 1/2 * 4√10 * √(x² + 144) * sin(45°)
    = 2√10 * √(x² + 144) * sin(45°)
    = √40 * √(x² + 144) * sin(45°)
    = √[40 * (x² + 144)] * sin(45°)
    = √(40x² + 5760) * sin(45°)
    = √(40x² + 5760) * [(√2)/2]
    2A = √(40x² + 5760) * √2
    2(6x + 24) = √(40x² + 5760) * √2
    12x + 48 = √[2 * (40x² + 5760)]
    = √(80x² + 11520)
    (12x + 48)² = [√(80x² + 11520)]²
    144x² + 1152x + 2304 = 80x² + 11520
    64x² + 1152x + 2304 = 11520
    64x² + 1152x - 9216 = 0
    x² + 18x - 144 = 0 (Factorable)
    x² + 24x - 6x - 144
    x(x + 24) - 6(x + 24)
    (x - 6)(x + 24) = 0
    x - 6 = 0 or x + 24 = 0
    x = 6 x = -24
    But x represents the length of a segment and it can't be negative, so x ≠ -24 & x = 6.
    Finally, find the area of △DCE. Substitute x = 6.
    A = (bh)/2
    = (12 * 6)/2
    = 72/2
    = 36
    So, the area of the blue triangle is 36 square centimeters.

  • @jarikosonen4079
    @jarikosonen4079 5 месяцев назад

    What happens if this is substituted to the Heron's formula as a=x+4, b=4*sqrt(10), c=sqrt(x^2+144), s=(a+b+c)/2 and set equal to 6x+24 ?
    (That could be required if angle is not 30°, 45°, 60° with no solution to the sin(angle))
    Should the Heron's formula result to the same result 6x+24 and task would not get completed with it this case...?

  • @josephsalinas6725
    @josephsalinas6725 5 месяцев назад

    Fiz utilizando a tangente. Bem mais simples.

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 месяцев назад +1

    CE=12/tg(180-45-arctg(12/4))=-12/tg(45+arctg3)=6...Ablue=12*6/2=36

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

    • @anthonycheng1765
      @anthonycheng1765 7 месяцев назад

      By drawing EF//CD, it is much easier to handle this problem (use the captioned approach)

  • @calvinmasters6159
    @calvinmasters6159 7 месяцев назад +3

    It's funny how what was tedious in high school can be enjoyable now.
    Like Shakespeare, which is wasted on highschoolers.

    • @PreMath
      @PreMath  7 месяцев назад +1

      Very well said!
      Thanks for the feedback ❤️
      Stay blessed🌹

  • @olivierjosephdeloris8153
    @olivierjosephdeloris8153 7 месяцев назад

    Possible avec la trigo, mais à un moment on a : tan(45 - atan(1/3)) = 0,5 qu'il est impossible à deviner sans calculatrice

  • @reynaldowify
    @reynaldowify 2 месяца назад

    Hello. tan BAE =1/3
    So, tan (45 - atan(1/3) = 1/2 So 12 * (1/2) = and the surface is 36

  • @AmirgabYT2185
    @AmirgabYT2185 7 месяцев назад +4

    S=36 square units

    • @PreMath
      @PreMath  7 месяцев назад +2

      Excellent!
      Thanks for sharing ❤️

  • @adgf1x
    @adgf1x 6 месяцев назад

    48cm^2=ar blue shade.

  • @michaelkouzmin281
    @michaelkouzmin281 7 месяцев назад +1

    brute force (i.e. with trigonometry):
    1. BE = 4cm;
    2. tg (AEF) = 4/12 = 1/3; AEF = atan(1/3);
    3. DAF = D45 - atan(1/3);
    4. tg(DAF) = x/12; => x= 12*tg(DAF) = 12 * tg(45-atan(1/3)) = 12 * (tg(45)-tg(atan(1/3)))/(1+tg(45)*tg(atan(1/3)) = 12* (1-1/3)/(1+1/3)= 12 * (2/3)/(4/3) = 12* (2/4) = 6 cm;
    5. Ablue = 12*x/2= 12*6/2= 36 sq cm.

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

    • @cebongkatro4073
      @cebongkatro4073 7 месяцев назад

      Like minded

  • @kalavenkataraman4445
    @kalavenkataraman4445 7 месяцев назад +2

    36, Sq. Units

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @draketheduelist
    @draketheduelist 5 месяцев назад

    I was looking at the thumbnail and going "...wait a second! Drawing not to scale!" You can't know for sure the quadrilateral shown is a rectangle from what we're given because you would have to be given the condition that (1) DA and CB are parallel or (2) either DAB or CDA are 90-degree angles, making the question unsolvable unless you know for a fact you're dealing with a rectangle.
    I hate it when the thumbnail doesn't give you everything you need to solve the problem.

  • @quigonkenny
    @quigonkenny 7 месяцев назад

    Triangle ∆ABE:
    Area = bh/2 = AB(BE)/2
    24 =12BE/2 = 6BE
    BE = 24/6 = 4
    Let ∠BEA = θ and ∠DEC = α. α = 180°- 45°- θ = 135°- θ. tan(θ) = AB/BE = 12/4 = 3.
    tan(α) = tan(135°- θ)
    tan(α) = (tan(135°)-tan(θ))/(1+tan(135°)tan(θ))
    tan(α) = (-1-3)/(1+(-1)3)
    tan(α) = (-4)/(1-3) = -4/(-2) = 2
    CD/EC = 2
    12/EC = 2
    EC = 12/2 = 6
    Triangle ∆ECD:
    Area = bh/2 = CD(EC)/2
    Area = 12(6)/2 = 36 cm²

  • @Ashi-cq7tj
    @Ashi-cq7tj 7 месяцев назад +3

    Me first again 😂😂

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 месяцев назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Angle DEC = alpha
    02) AD = BC = X
    03) CE = X - 4
    04) EB = 4 ; 48 / 12 = 4
    05) Area of Rectangle [ABCD] = A = 12 * X
    06) arctan(12/4) = arctan(3) ~ 71,6º
    07) 71,6º + 45º = 116,6º
    08) Alpha = 180º - 116,6º ~ 63,435º
    09) tan(63,435º) = 2
    10) 12 / (X - 4) = 2
    11) X = 10
    12) Total Area [ABCD] = 12 * 10 = 120
    13) Blue Area = (120 - 48) / 2 = 72 / 2 = 36
    14) ANSWER : Area of the Blue Triangle equal to 36 Square Centimeters.
    Greeting from The Center for Studies of Ancient Mathematical Thinking, Knowledge and Wisdom - Cordoba Caliphate!!

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!🌹
      Thanks for sharing ❤️🙏

  • @sergeyvinns931
    @sergeyvinns931 7 месяцев назад +2

    A=36!

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️