Integral of Inverse Functions

Поделиться
HTML-код
  • Опубликовано: 19 фев 2021
  • 🎓Become a Math Master With My Intro To Proofs Course!
    www.udemy.com/course/prove-it...
    🛜 Connect with me on my Website
    www.brithemathguy.com
    🙏Support me by becoming a channel member!
    / @brithemathguy
    Disclaimer: This video is for entertainment purposes only and should not be considered academic. Though all information is provided in good faith, no warranty of any kind, expressed or implied, is made with regards to the accuracy, validity, reliability, consistency, adequacy, or completeness of this information.
    #math #brithemathguy #integral

Комментарии • 176

  • @BriTheMathGuy
    @BriTheMathGuy  10 месяцев назад +2

    🎓Become a Math Master With My Intro To Proofs Course!
    www.udemy.com/course/prove-it-like-a-mathematician/?referralCode=D4A14680C629BCC9D84C

  • @toast_recon
    @toast_recon 3 года назад +70

    It seems crazy that you can do ANYTHING with this. The original form seems completely intractable. This is what I live for :)

  • @MrRyanroberson1
    @MrRyanroberson1 3 года назад +86

    the one i always mention on these proofs is ln(x) which is usually kinda hard to integrate, but here you instantly get x ln(x) - e^ln(x) + c = x (ln(x) - 1) + c. Similarly the integral of e^x is therefore x e^x - e^x (x - 1) + c = e^x + c. nice and neat.

    • @lukedavis6711
      @lukedavis6711 3 года назад +1

      Smart

    • @Johnny-tw5pr
      @Johnny-tw5pr 2 года назад +3

      Hard to integrate? It's the easiest integration by parts

    • @omidsedighi-mornani1636
      @omidsedighi-mornani1636 2 года назад +1

      i mean u just make an integration by parts and derive ln(x) and integrate 1

    • @MrRyanroberson1
      @MrRyanroberson1 2 года назад

      y'all mentioning integration by parts when that was the proof in the video to begin with. this trick IS integration by parts in the first place. what i meant by calling it hard is, of course, that this is hard to do without integration by parts

  • @tinotendamandizvidza1903
    @tinotendamandizvidza1903 3 года назад +130

    Thnxs this is making me like math more

  • @tsehayalemu5376
    @tsehayalemu5376 3 года назад +70

    Wish you thousands of subscribers in your career

  • @mrpedrobraga
    @mrpedrobraga 3 года назад +8

    2:24 So accepting, I think I needed to hear that.

  • @energyeve2152
    @energyeve2152 3 года назад +13

    I’ve seriously been exploring more math because of inspiring people like you. Keep shining brother ☀️

  • @diegocoglievinadiaz5665
    @diegocoglievinadiaz5665 3 года назад +20

    The quality of your explanation is unbelievable. You have won a subscriber :)

  • @BriTheMathGuy
    @BriTheMathGuy  3 года назад +20

    Integrals Playlist!
    ruclips.net/video/j0JN0q8FUtY/видео.html

  • @AshgabatKetchumov
    @AshgabatKetchumov 3 года назад +8

    I remember that question being on one of my single-variable analysis tests last year. That was a pretty good question, not gonna lie.

  • @atrumluminarium
    @atrumluminarium 3 года назад +10

    I literally had an epiphany seeing this result. I'm definitely gonna find somewhere to use this just to flex

  • @toasticide816
    @toasticide816 2 года назад +3

    I just love how simply using a well known method (well two) allows us to integrate any inverse function, which often can seem daunting. Or at least to me they're daunting!

  • @alexandrebriard9175
    @alexandrebriard9175 3 года назад +2

    Man your videos are so cool, I bet that your RUclips channel will gain a lot of viewers soon!

  • @pcklop
    @pcklop 3 года назад +1

    I got a similar statement about definite integrals by looking at areas on a graph, and remembering that an invertible function must be monotonic. It’s more work than this method, but can be generalized to give the same result!

  • @foolishball9155
    @foolishball9155 Год назад

    Love the last line of this video

  • @juandiegoparales9379
    @juandiegoparales9379 3 года назад +7

    Great video, thanks!!!

  • @AstoundingJB
    @AstoundingJB 2 года назад

    This result (sometimes referred to as a theorem) has a super nice interpretation when the integral is of the definite type, and actually requires no calculation at all

  • @User-7986iitjee
    @User-7986iitjee 2 года назад

    THANK YOU VERY VERY VERY VERY MUCH.

  • @Mulkek
    @Mulkek 2 года назад +1

    Thanks, and explain so clearly!

  • @hagenfarrell
    @hagenfarrell Год назад

    I got this question on my final for calculus 1 and I was blown away

  • @rick4135
    @rick4135 3 месяца назад

    Really nice way to turn into Riemann Stiljies integral after substitution then apply integration by parts!

  • @binodtharu8348
    @binodtharu8348 Год назад +1

    Nice!

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 года назад

    Bravo, sempre molto preciso

  • @bikeshike
    @bikeshike 3 года назад +13

    well explained👍🏾

  • @justt1ice
    @justt1ice 2 года назад +1

    There is an *intuitive* graphical explanation of this: integral(0 to t) of f(x)dx + integral(0 to f(t)) of f^(-1)(y)dy, conviently plotted on the same graph, fill up the rectangle [0,t]×[0,f(t)], so their sum equals tf(t).

  • @SanketGarg
    @SanketGarg Год назад

    If we look at the second last step, we basically have integral of f (the area under the curve with x axis) + integral of f inverse (are under the curve with y axis)= u * f(u). Which is basically the area of the overall rectangle (summing up the two areas)

  • @Redentor92
    @Redentor92 3 года назад +1

    Nice trick and video! Do you have any example where the integral would be hard but when considered as the inverse of a function this result makes it easy?

  • @tamazimuqeria6496
    @tamazimuqeria6496 3 года назад +7

    Am gonna use it

  • @anibalismaelfermandois6943
    @anibalismaelfermandois6943 3 года назад +30

    "Un Dia Vi Una Vaca sin(-) cola(∫) Vestida De Uniforme" ∫udv=uv-∫vdu.
    Thats the spanish way to remember integration by parts

    • @MusicalInquisit
      @MusicalInquisit 3 года назад +1

      I speak Spanish, but why does cola represent the integral? Is ther some pun I am not getting there? Does it look like a tail?

    • @michaeljimenez8205
      @michaeljimenez8205 3 года назад +3

      Un día vi a una vaca vestida de uniforme

    • @ComicSansaMS
      @ComicSansaMS 3 года назад +2

      @@MusicalInquisit an integral looks like a tail, yes.

    • @dgr751
      @dgr751 3 года назад +1

      I learned It with "un día vi un valiente soldado vestido de uniforme"

    • @P03enix
      @P03enix 3 года назад +1

      actually retrieving the integration by parts formula is pretty simple, using only the derivative of uv

  • @elfwired
    @elfwired 2 года назад

    It has geometrical explanation, flip the curve so x and y axes changes, and area under curve becomes rectangle area minus areaunder the curve.

  • @MrCigarro50
    @MrCigarro50 3 года назад

    Thank you for your video.

  • @iamtrash288
    @iamtrash288 3 года назад +1

    Beautiful presentation

  • @joske7804
    @joske7804 3 года назад

    Very concise, good video.

  • @leontsc4352
    @leontsc4352 3 месяца назад

    F(f^-1(x)) can also be written as the integral of f^-1(x), which is our original function: to solve for the function itself you need to solve an equation (I represented the integral of f^-1(x) as the variable u):
    u = xf^-1(x) - u;
    2u = xf^-1(x);
    u = xf^-1(x)/2;
    integral of f^-1(x) = xf^-1(x)/2
    (If I missed anything let me know 👇)

  • @Invincible2203
    @Invincible2203 3 года назад

    Can u make a video on integration of implict functions

  • @Qwerty-lq2op
    @Qwerty-lq2op 2 года назад +1

    2:57 why uf(u) is there suddenly? Where was it come from?

  • @BramCohen
    @BramCohen 2 года назад

    Can you integrate the function where f(f(x)) == e^x ?

  • @ExtremeAgent
    @ExtremeAgent 3 года назад +1

    When the video suddenly ended without any outro, my brain felt like being on the right seat while I drive on the left seat and I just brutally step on the break 😐

  • @depressedguy9467
    @depressedguy9467 3 года назад +1

    Stokes theorem on manifold plz

  • @babajani3569
    @babajani3569 3 года назад +11

    Does this only work for to one functions or can you do this for other functions as well, with a restricted domain such as inverse trig functions e.g. sin^-1x

    • @liamhanson9538
      @liamhanson9538 3 года назад +2

      The inverse of f exists if and only if f is a bijection, so yeah. Of course if you define a function on restricted domain st it's a bijection then ostensibly this would work.

    • @babajani3569
      @babajani3569 3 года назад +1

      @@liamhanson9538 ok thank you so this would work for inverse trig functions right?

    • @idrisShiningTimes
      @idrisShiningTimes 2 года назад

      @@babajani3569 yes in restricted domain only

  • @worldnotworld
    @worldnotworld 2 года назад

    Are there any good applications for this?

  • @fernandovictor708
    @fernandovictor708 2 года назад

    This works for every inverse continuos function?

  • @Alaska-mk4ok
    @Alaska-mk4ok 3 года назад

    That’s amazing

  • @willie333b
    @willie333b Год назад

    Nice

  • @Mauriciohse
    @Mauriciohse 3 года назад +7

    In the end, the integral depends on F(f^-1(x)) - which is the original question, isn't it?

    • @irfanadlan4662
      @irfanadlan4662 3 года назад +1

      ^

    • @cerezabay
      @cerezabay 3 года назад

      +

    • @coc235
      @coc235 3 года назад +12

      No, it means you first get the integral of f(x) and then plug in f^(-1)(x)

    • @nickbagby5313
      @nickbagby5313 3 года назад

      @@coc235 that makes things a lot clearer, I was confused about that as well

    • @angelmendez-rivera351
      @angelmendez-rivera351 3 года назад +4

      F refers to the antiderivative of f, F is not the antiderivative symbol itself.

  • @WahyuHidayat-oj4ro
    @WahyuHidayat-oj4ro 3 года назад

    Love to watch your video....maths become easier..😊

  • @venkataramana-mb7hc
    @venkataramana-mb7hc 3 месяца назад +1

    2:51 what happened here Can anyone explain?

  • @CombustibleL3mon
    @CombustibleL3mon 2 года назад

    I'm a mathematics master's student and I still love watching your videos Bri

  • @paulg444
    @paulg444 3 месяца назад +1

    should mention that f is a one to one function, else break the integral up into monotonic domains and add.

  • @Etothe2iPi
    @Etothe2iPi 3 года назад +6

    You should definitely add an example (or two).

    • @whatelseison8970
      @whatelseison8970 3 года назад

      Agreed. It's jarring how abruptly that ends. I barely had a chance to see the final line.

  • @ShockerXL
    @ShockerXL Год назад

    bri: math can be fun! just watch
    also bri: *writes f(u) = x unironically*

  • @Silly_Ah_Girl
    @Silly_Ah_Girl 2 года назад

    You are the best!!

  • @denischen8196
    @denischen8196 2 года назад

    What is the derivative of an inverse function?

  • @ShubhamKumar-sj6dp
    @ShubhamKumar-sj6dp 2 года назад

    If u are generalising that f-1(f(x))=x is not that a bit wrong , what if function is sin-1(sinx) , but in the question if the domain of the function is from [pi,2pi] sin-1(sinx) comes out to be (2pi-x) not x , it will be x is domain is from [0,pi] , is not the statement said case dependent ?

  • @mateserie7253
    @mateserie7253 3 года назад

    Is there a general formula to integrate (f(x))^2?

    • @TheEternalVortex42
      @TheEternalVortex42 2 года назад

      There is no general formula (at least as far as we know). For example, x e^(x^2) is easy to integrate, but the square of it has no known closed form.

  • @SeanStephensen
    @SeanStephensen 3 года назад

    this is easy using power rule. We know d/dx(f(x)) = 1*f^0(x) = f^0(x), and d^2/dx^2(f(x)) = d/dx(f^0(x)) = 0*f^-1(x), which we can't simplify to 0 because f^-1(x) could be 0 or infinity at some point, making this second derivative indeterminate. But this gives us an identity to help us solve the integral at hand. So the integral of f^-1(x) is simply f^0(x)/0 + c = infinity.

  • @duckymomo7935
    @duckymomo7935 3 года назад

    What’s an application

  • @tom-lukaslubbeke949
    @tom-lukaslubbeke949 Месяц назад

    I just realised that you must always be writing mirrored, you're writing on glass between you and the camera right? Honestly it's super impressive how nicely you can write mirrored

  • @spiderjerusalem4009
    @spiderjerusalem4009 2 года назад +1

    wait, so df(u) can actually also be part of the calculation? I thought that writing d-with any variable implies integrating a function with respect to that variable
    i hope someone can answer this so i can at least fathom the point of writing "dx" the whole time

    • @taranmellacheruvu2504
      @taranmellacheruvu2504 2 года назад

      You can think about it this way: f(u) = y. Then, you have an integral with respect to y. y is its own variable. An integral of u with respect to y doesn’t work because the integral must be in terms of only the variable y. Then, as in the video, integration by parts separates everything into digestible components. The moral of the story is that you can write anything in terms of anything else to make things easier because variables are arbitrary. That’s also the reason why u-sub works.

  • @joeeeee8738
    @joeeeee8738 3 года назад

    You should give an example?

  • @joeeeee8738
    @joeeeee8738 3 года назад +1

    Can this be used to compute e^(-x2) ?

    • @Bobbob-dv4hp
      @Bobbob-dv4hp 3 года назад

      If you’re talking about e^(-2x) then yes. If you’re talking about e^-(x)^2 then no, because there are no algebraic inverse functions e^-x^2

    • @joeeeee8738
      @joeeeee8738 3 года назад

      @@Bobbob-dv4hp I knew that but yeah, I misread the F(u). I guess I had my hopes high!

    • @medelb_w4
      @medelb_w4 2 года назад

      Its sqrt (-ln(x))

  • @jensrenders4994
    @jensrenders4994 3 года назад +1

    In the beginning you say u=f^-1(x), so literally calling the entire integrand u. You can directly substitute this. No need to take the form x = f(u), plug that in and then notice f an f^-1 cancel.
    Good video though ;)

  • @onemanenclave
    @onemanenclave 3 года назад

    Isn't f^(-1)(f(u)) unnecesary? When you let u = f^(-1)(x), you can just replace it with u in the integral.

  • @andrejgrebenc3235
    @andrejgrebenc3235 4 месяца назад

    I see the problem how to calculate F(f^-1(x)).

  • @KickRoozing
    @KickRoozing Год назад

    I love how there's not a single number in this math video :D

  • @absolutedesi5899
    @absolutedesi5899 Год назад

    I expected that answer. Because the area under the inverse function must be the total area - area under f(x)

  • @tomkerruish2982
    @tomkerruish2982 3 года назад +7

    Couldn't this just be looked at graphically, finding the area between the curve and the y-axis rather than between the curve and the x-axis?

  • @mathadventuress
    @mathadventuress 3 года назад

    What level of math if this
    Analysis

  • @jonathanbaxter4611
    @jonathanbaxter4611 3 года назад

    Kinda Redudant to plug in f(u) for x instead of u for f^-1(x)

  • @takyc7883
    @takyc7883 3 года назад

    Never knew what that circle meant!

  • @lemniscate23
    @lemniscate23 2 года назад

    +c ofcourse

  • @lotr3152
    @lotr3152 3 года назад

    Ok, but... Can we do this thing after all calculations are showed in this video?
    In the end of the video we have:
    integral of f^(-1)(x) = xf^(-1)(x)-F(f^(-1)(x))
    Or:
    F(f^(-1)(x)) = xf^(-1)(x)-F(f^(-1)(x))
    But now we can add to both parts of equation F(f^(-1)(x)) and get
    2*F(f^(-1)(x)) = xf^(-1)(x)
    After dividing by 2:
    F(f^(-1)(x)) = xf^(-1)(x)/2, or
    integral of f^(-1)(x)dx = xf^(-1)(x)/2 + C, isn't it?
    Ok, I know that I forgot constants in this equations, they are too many, I am just too lazy to write they, and it easily can be shown that they don't influence on result.

  • @youneverknow5555
    @youneverknow5555 3 года назад +1

    nice :)

  • @mariothethird5624
    @mariothethird5624 2 года назад

    Can't I just integrate f(u)=x?
    So then I get F(u)=(x^2)/2

  • @ByteOfCake
    @ByteOfCake 3 года назад +1

    why did you write it as d(f(u)) rather than f'(u)du?

    • @biblebot3947
      @biblebot3947 3 года назад +1

      They’re the same thing

    • @user-cr4fc3nj3i
      @user-cr4fc3nj3i 3 года назад

      @@biblebot3947 but 1+1 is the same thing as 2, why don't people write 1+1 rather than 2?
      sometimes we should just choose the "better" or a more "common" one when we got two same things.
      in my opinion d[f(u)] looks complicated, when compared to using f'(u) du, so i would upvote for writing f'(u) du rather than d[f(u)]

    • @biblebot3947
      @biblebot3947 3 года назад

      @@user-cr4fc3nj3i df(u) != f’(u)
      f’(u) = df(u)/du
      The poster was talking about f’(u)du, which is more complicated, so that actually proves my point as to why we should use df(u).

    • @user-cr4fc3nj3i
      @user-cr4fc3nj3i 3 года назад

      @@biblebot3947 no i was saying df(u) is f'(u) times du, not just f'(u)
      also why i perfer having f'(u) du is that because we usually like to have the thing after the "d" as simple as possible, for example imagine having
      dsin⁻¹(cos[tan(u)]), why man
      just do f'(u) times du, this can make the differential simple, and maybe from the f'(u) we can "cannel" something out from the original integrand too

    • @ByteOfCake
      @ByteOfCake 3 года назад

      @@biblebot3947 I guess they are the same thing. It feels weird to integrate with respect to a function though

  • @CrimS0n.
    @CrimS0n. Год назад

    "f(u)" The Mathematical way to curse someone

  • @wojciechszmyt3360
    @wojciechszmyt3360 3 года назад

    Isn't antiderivative an integral? You can throw the negative F to the left and simplify the equation further!

  • @remynettheim4918
    @remynettheim4918 3 года назад +44

    It is literally an abomination this channel has so few views

    • @MarioRossi-sh4uk
      @MarioRossi-sh4uk 3 года назад +4

      Because math is normally studied on a book, with paper and pencil beside, not on social media.

    • @Cjendjsidj
      @Cjendjsidj 2 года назад

      @@MarioRossi-sh4uk i say you can learn maths just fine through youtube.

  • @evolutiagames
    @evolutiagames 3 года назад

    Are you writing backwards?

  • @Alians0108
    @Alians0108 3 года назад +1

    You didn't really need the +C since F(f^-1(x)) comes with that anyways :P

    • @Sgrunterundt
      @Sgrunterundt 3 года назад

      I always took capital F(x) to mean any antiderivative of f, not all of them

    • @adb012
      @adb012 3 года назад +1

      F is ONE (any one) antiderivative of f, so you still need the C.

    • @johnwoods978
      @johnwoods978 3 года назад +1

      Ф(f^-1(x)) comes with +C, not F(f^-1(x)).

    • @Alians0108
      @Alians0108 8 месяцев назад

      I'm back to this comment after two years, and I have no idea what I meant by this

  • @johanneslade2830
    @johanneslade2830 2 года назад

    It seems like you play it a biy fast and loose with the integration by parts (IBP). Normally I would say, that you have somethings like f(x)g(x)dx and the dx is not part of the IBP. But here you just treat the df(u) as part of the IBP. I don't understand why you can do this.

  • @jeorgealonso4823
    @jeorgealonso4823 3 года назад +1

    I am really confused about this, is he using some fancy editing or he's actually writing reversed letters (from his perspective) on a glass blackboard?

    • @johnwoods978
      @johnwoods978 3 года назад

      he just flipped the video horizontally. as you can see, he writes with his left arm in the video.

  • @morbidmanatee5550
    @morbidmanatee5550 3 года назад +1

    I see what you did there haha :)

  • @muhammadsindidhossain6531
    @muhammadsindidhossain6531 2 года назад

    Why don't you wear glass anymore?

  • @PASHKULI
    @PASHKULI 3 года назад +1

    Please, elaborate on how u = 1/f(x) means that f(u) = x

    • @sy-py
      @sy-py 3 года назад +9

      That's not what superscript -1 means.

    • @apuji7555
      @apuji7555 3 года назад +6

      f-1(x) means the inverse of f(x).
      the inverse of a function is when you substitute y for x and x for y:
      y = f(x)
      switch the two variables
      x = f(y)
      then solve for y
      y = f-1(x).
      the '-1' is in superscript, but it doesn't mean 1/f(x), it means the inverse.
      And the inverse of the non-inverse of x = x.
      f-1(f(x)) = x.
      ______________
      An example to think about it:
      f(x) = 2x - 1
      => y = 2x - 1; y = f(x)
      switch varibles,
      x = 2y - 1
      solve for y,
      y = (x + 1) / 2
      y = 1/2 * x + 1/2.
      That is the inverse function of f(x), denoted by f-1(x).
      So:
      if f(x) = 2x - 1
      f-1(x) = 1/2 x + 1/2
      u can read online about it if you want to know more.

  • @ChechoColombia1
    @ChechoColombia1 3 года назад

    f^-1(x)=1/f^(x) lol

  • @Ahahahahstayingalive
    @Ahahahahstayingalive 2 года назад

    Um what?

  • @Fennaixelphox
    @Fennaixelphox 3 года назад

    It's funny because integration is, itself, also an inverse function

  • @user-be4ib8jt6l
    @user-be4ib8jt6l Год назад

    How are you writing by standing behind the board ...... I mean you are writing in mirror view ...... !

  • @TheRammiel
    @TheRammiel 3 года назад

    It totally misses the proof without words for this theorem, which can be found on Wikipedia. No need to assume f is differentiable

  • @charliemoll5435
    @charliemoll5435 3 года назад

    I might be stupid. But is he drawing the math backwards so it appears normal on the screen?

    • @johnwoods978
      @johnwoods978 3 года назад

      yes. he definitely wasn't able to flip the video horizontally.

    • @BriTheMathGuy
      @BriTheMathGuy  3 года назад +3

      I flip the video during editing :)

    • @scottleung9587
      @scottleung9587 2 года назад

      @@BriTheMathGuy Interesting - I thought you were left-handed and very good at writing backwards!

  • @tomaslopez814
    @tomaslopez814 3 года назад

    Like the math but you really be cuttin it off short. The standard bump is 5 sec but an outro wouldn't hurt, esp if you standardize it

  • @andorra3862
    @andorra3862 2 года назад

    haven't started the video but something tells me that the final result will include at least one instance of the gamma function or a factorial.
    edit: just watched the video, my disappointment is immeasurable and my day is ruined.

  • @BurningShipFractal
    @BurningShipFractal Год назад +1

    What about derivative?
    Edit: I found the video
    ruclips.net/video/xsUDGY2u41M/видео.html

  • @muskyoxes
    @muskyoxes 3 года назад

    If you use this presentation style a lot, you must be asked on every video if you're really writing backwards

  • @schrodingerbracat2927
    @schrodingerbracat2927 3 года назад +1

    i like f(u) and F(u), what about u?

  • @bonbonenuranium5034
    @bonbonenuranium5034 3 года назад +1

    df(u)/du = f'(u) so df(u) = f'(u) du and it makes the intégral easier

  • @ASN_9320
    @ASN_9320 3 года назад

    If d(f(u)) is the variable..then should you not take derivative of u with respect to f(u)?

  • @ospreytalon8318
    @ospreytalon8318 3 года назад +3

    Careful!
    dv=f'(u) NOT df(u) (which is instead equal to f'(u)du).
    It should be split up in that integral you do IBP on because you cant integrate the differential operator.
    The logic flows and everything else is correct, but this step is wrong.

  • @knight3481
    @knight3481 3 года назад

    It looks quite ugly though.