China Math Olympiad Problem | A Very Nice Geometry Challenge

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 25

  • @bpark10001
    @bpark10001 7 дней назад

    I did it differently, first assigning lengths along bottom. Extend & add lines to form rectangle with P & Q as corners. Lower left point is E & upper right is F.
    Let QC = 4K, then CD = 8K, DE = 3K. PE (side of square) = 8K. X = (12/15)(8K) = (32/5)K.
    Solve for K using triangle PEQ to get K = 15/17. X = (15/17)(32/5) = 96/17.

  • @MarieAnne.
    @MarieAnne. Месяц назад

    ∠BPQ = ∠DQP (alternate interior angles formed by transversal PQ and parallel lines PB and QD)
    Therefore, right triangles APS, BPT, CQT, DQS are similar, with diagonals of length 3, 11, 4, 12 respectively.
    If we let AS = 3a, then we get BT = 11a, CT = 4a, DS = 12a
    If we let AP = 3b, then we get BP = 11b, CQ = 4b, DQ = 12b
    Sides of square:
    AD = AS + DS = 3a + 12a = 15a
    BC = BT + CT = 11a + 4a = 15a
    AB = BP − AP = 11b − 3b = 8b
    CD = DQ − CQ = 12b − 4b = 8b
    8b = 15a → b = 15a/8
    Using Pythagorean theorem in right triangle APS we get
    AS² + AP² = PS²
    (3a)² + (3b)² = 3² [divide by 9]
    a² + b² = 1
    a² + (15a/8)² = 1
    a² + 225a²/64 = 1
    289a²/64 = 1
    a² = 64/289
    a = 8/17
    x = DS = 12a = 12(8/17) = 96/17
    *x = 96/17*

  •  Месяц назад +1

    from Morocco thank you for your clear wonderful explanations

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад +1

    AB=a→ a²+(15a/8)²=15²→ a=120/17 → (a-x)/3=x/12→ [(120/17)-x]/3=x/12→ x=96/17=5,64705...
    Gracias y un saludo.

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад +1

    X = 96/17. At the 6:00 mark, I have notcied that if complementary angles are involved and both triangles are HL similar, they BOTH have a pair of sudes that are the LAST two letters in the triangle subtended for alpha angle the common pair is set equal to the first two letters of the alpha similar triangles and for beta, the similar sides are set equal the first and last letters of beta similar triangles. Let me know if that is a sufficient explanation for a problem that I might want to practice on!!!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад

    (l-x)/3=TC/4=√(64-l^2)/8..TC=x-√(64-l^2)...l=lato del quadrato ..risulta 4x^2/9=64-l^2,l=5x/4..per cui x=96/17

  • @quigonkenny
    @quigonkenny Месяц назад +1

    Let s be the side length of square ABCD. Let M be the point on DA where TM is perpendicular to DA and BC and parallel to AB and CD. Extend CD to N and drop a perpendicular from P to N.
    As ∠PNQ = ∠SMT = 90° and ∠MTS and ∠NQP are corresponding angles and thus congruent, ∆PNQ and ∆SMT are similar triangles. By the same token, ∆SDQ is also similar to ∆SMT and ∆PNQ.
    PN/QP = SM/TS
    s/15 = SM/8
    SM = 8s/15
    SM² + MT² = TS²
    (8s/15)² + s² = 8²
    64s²/225 + s² = 64
    289s²/225 = 64
    s² = 64(225/289) = 8²(15²)/17²
    s = √(8²(15²)/17²) = 120/17
    SD/QS = PN/QP
    x/12 = s/15
    12s = 15x
    x = 12s/15 = 4s/5
    x = 4(120/17)/5 = 4(24)/17
    x = 96/17 ≈ 5.647 units

    • @marioalb9726
      @marioalb9726 Месяц назад +1

      tanα = 1/(1+7/8) --> α=28.0725°
      x = (8+4) sin α
      x = 5,647 cm ( Solved √ )
      !!! EASIER !!!

  • @lu.cicerone.cavalheiro
    @lu.cicerone.cavalheiro Месяц назад +2

    Suggestion: using red over black isn't easy to see and read.

  • @ZwickyFGAFDGC-f8m
    @ZwickyFGAFDGC-f8m Месяц назад

    PS=PQ/5,PS/SQ=AS/x=1/4
    AS/CT=3/4,CT/x=4AS/3x=1/3
    CT=x/3,AS=x/4
    CD=5x/4,CQ=5x/8
    (15x/8)²+x²=144
    289x²/64=144
    x=12*8/17=96/17

  • @brettgbarnes
    @brettgbarnes Месяц назад

    AD² + (PA + DC + CQ)² = (PS + ST + TQ)²
    a = AD = DC
    a² + [(3/8)a + a + (4/8)a]² = (3 + 8 + 4)²

  • @Latronibus
    @Latronibus Месяц назад

    Seems overly complicated. Let t=angle PQD and draw a perpendicular to AD through T with foot U. Then 3 sin(t) + x = 15 sin(t) so x=12 sin(t) and 15 sin(t)=8cos(t). So x=12 sin(arctan(8/15))=96/17.
    You can get away without the trig. In the end this comes down to PRQ ~ SDQ ~ SUT ~ TCQ, where R is the foot of the perpendicular to DC through P. The rest is Pythagoras and PR=DQ-CQ.

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    Extremely complicated, video method
    See below an easier method:
    s = side of square
    a = horizontal proyection of segment PQ
    tanα = s/a = 1/(1+7/8) --> α=28.0725°
    x = (8+4) sin α
    x = 5,647 cm ( Solved √ )

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    Extremely easy:
    tanα = 1/(1+7/8) --> α=28.0725°
    x = (8+4) sin α
    x = 5,647 cm ( Solved √ )

  • @himo3485
    @himo3485 Месяц назад

    3/(8+4)=AS/x 1/4=AS/x AS=x/4
    4/(8+4)=TC/x 1/3=TC/x TC=x/3
    x+x/4=5x/4 5x/4-x/4-x/3=2x/3
    (2x/3)²+(5x/4)²=8² 4x²/9+25x²/16=64 64x²/144+225x²/144=64
    289x²=144*64 (17x)²=12*12*8*8=96² 17x=96 x=96/17

  • @AuriEsperanzaSQ
    @AuriEsperanzaSQ Месяц назад

    Ya corregí, un signo me equivoqué..
    Lo hice de 2 formas diferentes.
    5x/4 +(114-x2)/3 =(144-x2)
    Y tambien realizando ecuaciones cuadraticas de 144=(5x2/4)2 +((144-x2)/3)2 y salieron 2 respuestas 97/17 con la resta y 8,75 con la suma

  • @hhuynguyenminh4550
    @hhuynguyenminh4550 Месяц назад

    2nd method
    because ABCD is square so AB//CD
    --> SA/SD = SP/SQ ( Thales)
    SA/x = 3/(4+8)
    SA=x/4
    AD = AS + SD = x+x/4 = 5x/4
    Beside ABCD is square so CD=AD= 5x/4
    we have TC//SD so
    CD/CQ = TS/TQ ( Thales )
    (5x/4)/CQ = 8/4
    CQ = (5x/4)(4/8) = 5x/8
    So DQ = DC +CQ = 5x/4 +5x/8 = 15x/8
    Because right Triangle SDQ at D so
    SD^2+DQ^2 = SQ^2 ( Pythagoras)
    x^2 +(15x/8)^2 = 12^2
    x^2+(225/64)x^2 = 144
    (289/64)x^2=144
    x^2=144.(289/64)
    x=sqrt (144.(289/64))=96/17
    Thank you, love from Vietnam.

    • @marioalb9726
      @marioalb9726 Месяц назад +2

      tanα = 1/(1+7/8) --> α=28.0725°
      x = (8+4) sin α
      x = 5,647 cm ( Solved √ )
      3rd and easier method

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    (3)^2(8)^2={9+64}=73 360°ABCD/73x 4.68ABCDX 4.4^17 2^2.2^2^17^1 1^1.1^2^1^1 21 (ABCDX ➖ 2ABCDX+1).

  • @yakupbuyankara5903
    @yakupbuyankara5903 Месяц назад

    X=96/17.

  • @sorourhashemi3249
    @sorourhashemi3249 Месяц назад

    Difficult

  • @AizahAsif-o4r
    @AizahAsif-o4r Месяц назад

    @understandingmath1
    Oxford new syllabus
    D1, D2, D3 Math solutions are availabe.