Simplifying A Rational Exponential Expression

Поделиться
HTML-код
  • Опубликовано: 8 янв 2025

Комментарии • 6

  • @scottcowan8036
    @scottcowan8036 2 дня назад +8

    My approach:
    Rewrite 100^50 = (10^2)^50 = 10^100.
    Then (50^100)/(100^50) = (50^100)/(10^100) = (50/10)^100 = 5^100.
    Which is of course the same as 25^50 = (5^2)^50 = 5^100.

  • @Durglass
    @Durglass 2 дня назад

    Mistake at 3:52 , you put down an extra zero.

  • @rob876
    @rob876 День назад

    5^100

  • @juergenilse3259
    @juergenilse3259 21 час назад

    Since 100^50=(2*50)^50=2^50*50^50, 50^100/100^50=50^(50+50)/(2^50*50^50)=50^50/2^50=(50/2)^50=25^50
    Since 25=5^2, we can rewrite this resulllttt also to 25^50=(5^2)^50=5^(2+50)=5^100

  • @Don-Ensley
    @Don-Ensley 2 дня назад +3

    problem
    ( 50 )¹⁰⁰ / (100)⁵⁰ = ?
    ( 50 )¹⁰⁰ / (100)⁵⁰ = ( 5• 10 )¹⁰⁰ / (100)⁵⁰
    = ( 5 ¹⁰⁰• 10 ¹⁰⁰ ) / (100)⁵⁰
    = ( 5 ¹⁰⁰• 10 ⁽²⁾ ⁽⁵⁰⁾ ) / (100)⁵⁰
    = ( 5 ¹⁰⁰• (10 ⁽²⁾)⁽⁵⁰⁾) / (100)⁵⁰
    = ( 5 ¹⁰⁰• (100)⁵⁰ ) / (100)⁵⁰
    = 5 ¹⁰⁰
    A 70 digit decimal number!
    answer
    5 ¹⁰⁰